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Preface 
 

Genetic Algorithms are a part of Evolutionary Computing, which is a rapidly growing 
area of Artificial Intelligence. The popularity of Genetic Algorithms is reflected in the 
increasing amount of literature devoted to theoretical works and real-world 
applications in both scientific and engineering areas. The useful application and the 
proper combination of the different Genetic Algorithms with the various optimization 
algorithms is still an open research topic. 

This book addresses some of the most recent issues, with the theoretical and 
methodological aspects, of evolutionary multi-objective optimization problems and 
the various design challenges using different hybrid intelligent approaches. Multi-
objective optimization has been available for about two decades, and its application in 
real-world problems is continuously increasing. Furthermore, many applications 
function more effectively using a hybrid systems approach. Hybridization of Genetic 
Algorithms is getting popular due to their capabilities in handling different problems 
involving complexity, noisy environment, uncertainty, etc. The book presents hybrid 
techniques based on Artificial Neural Network, Fuzzy Sets, Automata Theory, other 
metaheuristic or classical algorithms, etc. The volume examines various examples of 
algorithms in different real-world application domains as graph growing problem, speech 
synthesis, traveling salesman problem, scheduling problems, antenna design, genes design, 
modeling of chemical and biochemical processes etc.  

The book, organized in 17 chapters, begins with several applications of Hybrid Genetic 
Algorithms in wide range of problems. Further, some applications of Genetic Algorithms 
and other heuristic search methods are presented. 

The objective of Chapter 1 is to model and to optimize the process performances 
simultaneously in the plasma-catalytic conversion of methane such that the optimal 
process performances are obtained at the given process parameters. A Hybrid Artificial 
Neural Network-Genetic Algorithm (ANN-GA) is successfully developed to model, to 
simulate and to optimize simultaneously a catalytic-dielectric-barrier discharge 
plasma reactor. The integrated ANN-GA method facilitates powerful modeling and 
multi-objectives optimization for co-generation of synthesis gas, C2 and higher 
hydrocarbons from methane and carbon dioxide in a dielectric barrier discharge 
plasma reactor. 



X Preface 
 

Chapter 2 presents a new fast and accurate electromagnetic optimization technique 
combining full-wave method of moments, bio-inspired algorithms, continuous Genetic 
Algorithm and Particle Swarm Optimization, and multilayer perceptrons Artificial Neural 
Networks. The proposed optimization technique is applied for optimal design of 
frequency selective surfaces with fractal patch elements. A fixed frequency selective 
surface screen geometry is chosen a priori and then a smaller subset of frequency 
selective surface design variables is optimized to achieve a desired bandstop filter 
specification. 

The main contribution of the Chapter 3 is the test of the Hybrid MOEA-HCEDA 
Algorithm and the quality index based on the Pareto front used in the graph drawing 
problem. The Pareto front quality index printed on each generation of the algorithm 
showed a convergent curve. The results of the experiments show that the algorithm 
converges. A graphical user interface is constructed providing users with a tool for a 
friendly and easy to use graphs display. The automatic drawing of optimized graphs 
makes it easier for the user to compare results appearing in separate windows, giving 
the user the opportunity to choose the graph design which best suits their needs. 

Chapter 4 studies metaheuristics based on the Automata Theory for the multi-objective 
optimization of combinatorial problems. The SAMODS (Simulated Annealing inspired 
Algorithm), SAGAMODS (Evolutionary inspired Algorithm) and EMODS (using Tabu 
Search) algorithms are presented. Presented experimental results of each proposed 
algorithm using multi-objective metrics from the specialized literature show that the 
EMODS has the best performance. In some cases the behavior of SAMODS and 
SAGAMODS tend to be the same – similar error rate.  

Chapter 5 presents a Hybrid Genetic Algorithm (Genetic Algorithm linked to a Simulated 
Annealing) intended to solve the Flexible Job-Shop Scheduling Problem procedure able 
to schedule the production in a Job-Shop manufacturing system. The authors show 
that this Hybrid Genetic Algorithm yields more solutions in the Approximate Pareto 
Frontier than other algorithms. A platform and programming language independent 
interface for search algorithms has been used as a guide for the implementation of the 
proposed hybrid algorithm. 

Chapter 6 suggests mathematical programming models and a Hybrid Parallel Genetic 
Algorithm (HPGA) for reliability optimization with resource constraints. The 
considered algorithm includes different heuristics such as swap, 2-opt, and 
interchange for an improvement solution. The experimental results of HPGA are 
compared with the results of existing meta-heuristics. The suggested algorithm 
presents superior solutions to all problems and found that the performance is superior 
to existing meta-heuristics. 

Chapter 7 discusses the effectiveness of Genetic Algorithms in determining the optimal 
values of hyper-parameters of Least Squares-Support Vector Machines to solve power 
tracing problem. The developed hybrid Genetic Algorithm-Support Vector Machines (GA-
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SVM) adopts real and reactive power tracing output determined by Superposition 
method as an estimator to train the model. The results show that GA-SVM gives good 
accuracy in predicting the generators’ output and compared well with Superposition 
method and load flow study. 

Chapter 8 provides an insight into the general reasoning behind selection of the Genetic 
Algorithms control parameters, discuss the ways of boosting the algorithm efficiency, 
and finally introduce a simple Global-local Hybrid Genetic Algorithms capable of fast and 
reliable optimization of multi-parameter and multi-extremum functions. The 
effectiveness of the proposed algorithm is demonstrated by numerical examples, 
namely: synthesis of linear antenna arrays with pencil-beam and flat-top patterns. 

Chapter 9 introduces a hybrid methodology, the Heuristics Backtracking, an approach 
that combines a search algorithm, the backtracking, integer linear programming and 
Genetic Algorithms to solve the three dimensional knapsack loading problem 
considering weight distribution. The authors show that the Heuristics Backtracking 
achieved good results without the commonly great trade-off between the utilization of 
container and a good weight distribution. Some benchmark tests taken from literature 
are used to validate the performance and efficiency of the Heuristics Backtracking 
methodology as well as its applicability to cutting-stock problems. 

Chapter 10 introduces two Hybrid Genetic Algorithms to solve the sequence-dependent 
setup times single machine problem. The proposed approaches are essentially based 
on adapting highly specialized genetic operators to the specificities of the studied 
problem. The numerical experiments demonstrate the efficiency of the hybrid 
algorithms for this problem. A natural conclusion from these experimental results is 
that Genetic Algorithms may be robust and efficient alternative to solve this problem. 

Chapter 11 presents the Group Method of Data Handling-type Neural Network with 
Genetic Algorithm used to develop the early egg production in broiler breeder. By 
means of the Group Method of Data Handling Algorithm, a model can be represented 
as a set of quadratic polynomials. Genetic Algorithms are deployed to assign the 
number of neurons (polynomial equations) in the network and to find the optimal set 
of appropriate coefficients of the quadratic expressions. 

Chapter 12 discusses some of the computational issues for evolutionary searches to find 
gene-regulatory sequences. Here the retroGenetic Algorithm technique is introduced. 
Proposed Genetic Algorithm crossover operator is inspired by retroviral recombination 
and in vitro DNA shuffling mechanisms to copy blocks of genetic information. The 
authors present particular results on the efficiency of retroGenetic Algorithm in 
comparison with the standard Genetic Algorithm. 

Chapter 13 examines the use of Genetic Algorithms and Ant Colony Optimization for 
parameter identification of a system of nonlinear differential equations modeling the 
fed-batch cultivation process of the bacteria E. coli. The results from both 
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metaheuristics Genetic Algorithms and Ant Colony Optimization are compared using the 
modified Hausdorff distance metric, in place of most common used – least squares 
regression. Analyzing of average results authors conclude that the Ant Colony 
Optimization algorithm performs better for the considered problem. 

Chapter 14 presents a brief description about the estimation problem of a formant 
synthesizer, such as the Klatt. The combination of its input parameters to the imitation 
of human voice is not a simple task, because a reasonable number of parameters have 
to be combined and each of them has an interval of acceptable values that must be 
carefully adjusted to produce a specific voice. The authors conclude that it is necessary 
to develop a more efficient mechanism for evaluating the quality of the generated 
voice as a whole, and include it in the Genetic Algorithm speech framework. 

Chapter 15 discusses about how Genetic Algorithm and heuristic search can solve the 
scheduling problem. As a case study the “Universitas Pelita Harapan” timetable is 
considered. The authors propose the architecture design of the system and show some 
experiments implementing the system. 

The objective of Chapter 16 is to show a set of single-objective and multi-objective 
Genetic Algorithms, designed by the Optical Communications Group at the University 
of Valladolid, to optimize the performance of semi-static Wavelength-Routed Optical 
Networks (WRONs). The fundamentals of those algorithms, i.e., the chromosome 
structures, their translation, the optimization goals and the genetic operators 
employed are described. Moreover, a number of simulation results are also included to 
show the efficiency of Genetic Algorithms when designing WRONs. 

Finally, Chapter 17 gives an overview of existing surrogate modeling techniques and 
issues about how to use them for optimization. Surrogate modeling techniques are of 
particular interest for engineering design when high-fidelity, thus expensive analysis 
codes (e.g. computation fluid dynamics and computational structural dynamics) are 
used. 

The book is designed to be of interest to a wide spectrum of readers. The authors hope 
that the readers will find this book useful and inspiring.  

 
Olympia Roeva 

Institute of Biophysics and Biomedical Engineering 
Bulgarian Academy of Sciences 

Sofia, 
Bulgaria 
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Different Tools on Multi-Objective 
Optimization of a Hybrid Artificial Neural 
Network – Genetic Algorithm for Plasma 

Chemical Reactor Modelling 

Nor Aishah Saidina Amin1,* and I. Istadi2 
1Chemical Reaction Engineering Group, Faculty of Chemical Engineering, 

Universiti Teknologi Malaysia, Johor Bahru,  
2Laboratory of Energy and Process Engineering, Department of Chemical Engineering, 

Diponegoro University, Jl. Prof. H. Soedarto, SH., Semarang,  
1Malaysia 

2Indonesia 

1. Introduction 

Simultaneous modeling and optimization allows a cost-effective alternative to cover large 
number of experiments. The model should be able to improve overall process performance 
particularly for the complex process. A hybrid Artificial Neural Network - Genetic 
Algorithm (ANN-GA) was developed to model, to simulate, and to optimize simultaneously 
a catalytic–plasma reactor. The present contribution is intended to develop an ANN-GA 
method to facilitate simultaneous modeling and multi-objective optimization for co-
generation of synthesis gas, C2 and higher hydrocarbons from methane and carbon dioxide 
in a dielectric-barrier discharge (DBD) plasma reactor. The hybrid approach simplifies the 
complexity in process modeling the DBD plasma reactor. 

A hybrid of ANN-GA method has been used for integrated process modelling and multi-
objectives optimization. The detail hybrid algorithm for simultaneous modelling and multi-
objective optimization has been developed in previous publication which focused on plasma 
reactor application (Istadi & Amin, 2005, 2006, 2007). They reported that the hybrid ANN-
GA technique is a powerful method for process modelling and multi-objectives optimization 
(Nandi et al., 2002, 2004; Ahmad et al., 2004; Stephanopoulos & Han, 1996; Huang et al., 2003; 
Radhakrishnan & Suppiah, 2004; Fissore et al., 2004; Nandi et al., 2002, 2004; Ahmad et al., 
2004; Kundu et al., 20009; Marzbanrad & Ebrahimi, 2011; Bhatti et al., 2011). The method is 
better than other technique such as response surface methodology (RSM) (Istadi & Amin, 
2006, 2007), particularly for complex process model. The RSM proposes a quadratic model 
as empirical model for representing the effect of independent variables toward the targeting 
response. Therefore, all models which may not follow the quadratic trend are forced to the 
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quadratic model. Disadvantage of the RSM method is then improved by the hybrid ANN-
GA. In the later method, an empirical mathematical modelling of catalytic cracking was 
conducted by ANN strategy, while the multi-objectives optimization of operating conditions 
to reach optimal responses was performed using GA method.  

In terms of single-response optimization applications, the selection of optimization method 
is very important to design an optimal catalyst as well as the relations between process 
parameters and catalytic performances (Wu et al., 2002). Pertaining to the catalyst design, 
some previous researchers introduced ANN to design the catalysts (Hattori & Kito, 1991, 
1995; Hou et al., 1997). The ANN is feasible for modeling and optimization, and 
consequently, large number experiments can be avoidable (Wu et al., 2002). According to the 
complex interaction among the catalyst compositions, the process parameters and the metal-
support interaction with no clear reaction mechanism as in CO2 OCM process, the empirical 
models are more useful in the catalyst design especially in the optimization studies. The 
reason is that the phenomenological modeling of interactions in the catalyst design is very 
complex. Unfortunately, a single-response optimization is usually insufficient for the real 
CO2 OCM process due to the fact that most responses, i.e. methane conversion, product 
selectivity and product yield, are dependent during the process. Therefore, simultaneous 
modeling and multi-objective optimization techniques in complex plasma reactor is worthy. 
A simultaneous multi-objective optimization is more realistic than a single-response from 
reliability point of view. Empirical and pseudo-phenomenological modeling approaches 
were employed by previous researchers (Wu et al., 2002; Larentis et al., 2001; Huang et al., 
2003) for optimizing the catalytic process. The empirical modeling is efficient for the 
complex process optimization, but the drawback is that the model has no fundamental 
theory or actual phenomena meaning.  

Pertaining to multi-objective optimization, a graphical multi-responses optimization 
technique was implemented by previous researchers for xylitol crystallization from 
synthetic solution (de Faveri et al., 2004), but it was not useful for more than two 
independent variables or highly nonlinear models. In another study, a generalized distance 
approach technique was developed to optimize process variables in the production of 
protoplast from mycelium (Muralidhar et al., 2003). The optimization procedure was carried 
out by searching independent variables that minimize the distance function over the 
experimental region in the simultaneous optimal critical parameters. Recently, robust and 
efficient technique of elitist Non-dominated Sorting Genetic Algorithm (NSGA) was used to 
obtain solution of the complex multi-objective optimization problem (Huang et al., 2003; 
Nandasana et al., 2003; Zhao et al., 2000; Nandi et al., 2004). A hybrid GA with ANN was also 
developed (Huang et al., 2003) to design optimal catalyst and operating conditions for O2 
OCM process. In addition, a comprehensive optimization study of simulated moving bed 
process was also reported using a robust GA optimization technique (Zhang et al., 2002b). 

Several methods are available for solving multi-objective optimization problem, for 
example, weighted sum strategy (The MathWorks, 2005; Youness, 2004; Istadi, 2006), ε-
constraint method (Yu et al., 2003; The MathWorks, 2005; Youness, 2004), goal attainment 
method (Yu et al., 2003; The MathWorks, 2005), NSGA (Nandasana et al., 2003; Zhang et al., 
2002b; Yu et al., 2003), and weighted sum of squared objective function (WSSOF) (Istadi & 
Amin, 2006b, 2007; Istadi, 2006) to obtain the Pareto set. The NSGA method has several 
advantages (Zhang et al., 2002b): (a) its efficiency is relatively insensitive to the shape of the 
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Pareto-optimal front; (b) problems with uncertainties, stochasticities, and discrete search 
space can be handled efficiently; (c) spread of the Pareto set obtained is excellent, and (d) 
involves a single application to obtain the entire Pareto set. Among the methods, the NSGA 
is the most powerful method for solving a complex multi-responses optimization problem. 
In the multi-objective optimization of the CO2 OCM process, the goal attainment combined 
with hybrid ANN-GA method was used to solve the optimization of catalytic-plasma 
process parameters. The multi-objective optimization strategy was combined 
simultaneously with ANN modelling and GA optimization algorithm. The multi-objective 
optimization deals with generation and selection of non-inferior solution points or Pareto-
optimal solutions of the responses / objectives corresponding to the optimal operating 
parameters. The DBD plasma-catalytic coupling of methane and carbon dioxide is an 
intricate process within the plasma-catalytic reactor application. A hybrid ANN-GA 
modelling and multi-objective optimization was developed to produce a process model that 
simulated the complex DBD plasma – catalytic process. There were no previous researchers 
focused on the simultaneous modelling and multi-objective optimization of DBD plasma – 
catalytic reactor using the hybrid ANN-GA. 

The objective of this chapter is to model and to optimize the process performances 
simultaneously in the DBD plasma-catalytic conversion of methane to higher hydrocarbons 
such that the optimal process performances (CH4 conversion and C2 hydrocarbons yield) are 
obtained at the given process parameters. In this Chapter, multi-objective optimization of 
two cases, i.e. C2 hydrocarbon yield and C2 hydrocarbons selectivity, and C2 hydrocarbons 
yield and CH4 conversion, to produce a Pareto Optimal solution is considered. In the 
process modeling, a number of experimental data was needed to validate the model. The 
ANN-based model required more example data which were noise-free and statistically well-
distributed. Therefore, design of experiment was performed using central composite design 
with full factorial design for designing the training and test data sets. The method was 
chosen in order to provide a wider covering region of parameter space and good 
consideration of variable interactions in the model. This chapter is organized according to 
sections 1, 2, 3 and 4. After Introduction in section 1, section 2 covers design of experiment 
and strategy for simultaneous modeling and optimization including hybrid ANN-GA 
algorithm. In section 3, multi-objective optimization of methane conversion to higher 
hydrocarbons process over plasma – catalytic reactor is applied. In this section, ANN 
simulation of the DBD plasma – catalytic reactor performance is also presented with respect 
to the two cases. The final section, section 4 offers conclusions about the chapter. 

2. Design of experiment, modeling, and optimization strategies 

2.1 Central composite design for design of experiment 

Central Composite Design for four factors was employed for designing the experimental 
works in which variance of the predicted response Y at some point X is only a function of 
distance from the point to the design centre (Montgomery, 2001). Hence, the variance of Y 
remained unchanged when the design is rotated about the centre. In the design, standard 
error, which depends on the coordinates of the point on the response surface at which Y is 
evaluated and on the coefficients β, is the same for all points that are same distance from the 
central point. The value of α for star point with respect to design depends on the number of 
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points in the factorial portion of the design which is given in Equation (1) (Montgomery, 
2001; Clarke & Kempson, 1997). 

 ( )1/4  cα n=  (1) 

where nc is number of points in the cube portion of the design (nc = 2k, k is number of 
factors). Since there are four parameters/factors in this experiment, the nc number is equal to 
24 (= 16) points, and α=2 according to Equation (1). 

An experimental design matrix revealed in Table 1 consists of sets of coded conditions 
expressed in natural values (Istadi & Amin, 2006a) with a two-level full factorial design (nc), 
star points (ns) and centre points (n0). Based on this table, the experiments for obtaining the 
responses of CH4 conversion (X(CH4)), C2 hydrocarbons selectivity (S(C2)) and C2 
hydrocarbons yield (Y(C2)) were carried out at the corresponding independent variables. 
Number experimental data were used for validating the hybrid ANN-GA model of the 
catalytic-plasma CO2 OCM process. Sequence of the experimental work was randomized in 
order to minimize the effects of uncontrolled factors. The experimental data from catalytic-
plasma reactor operation with respect to combination of four factors including their respected 
responses (plasma-catalytic reactor performances: CH4 conversion, C2 hydrocarbons 
selectivity, C2 hydrocarbons yield, and H2 selectivity) are presented in Table 2. 
 

Factors Range and levels 
-α -1 0 +1 +α 

CH4/CO2 Ratio (X1), [-] 0.8 1.5 2.5 3.5 4.2 
Discharge voltage (X2), kV 12.5 13.5 15.0 16.5 17.5 

Total feed flow rate (X3), cm3/min 18 25 35 45 52 
Reactor temperature (X4), oC 81 150 250 350 418 

Note: -1 (low level value); +1 (high level value); 0 (centre point); +α and -α (star points) 

Table 1. Central Composite Design with fractional factorial design for the catalytic DBD 
plasma reactor (Istadi, 2006) 

2.2 Simultaneous modelling and multi-objective optimization 

The integrated ANN-GA strategy meets the objective based on two steps: (a) development 
of an ANN-based process model which has inputs of process operating parameters of 
plasma – catalytic reactor, and output(s) of process output/response variable(s), i.e. yield of 
C2hydrocarbons or hydrogen, or methane conversion; and (b) development of GA technique 
for multi-objective optimization of the ANN model. Input space of the ANN model is 
optimized using the GA technique such that the optimal response(s) or objective(s) are 
obtained corresponding to the optimal process parameters. The developed simultaneous 
algorithm is presented in a hybrid Algorithm of ANN-GA schematically for simultaneous 
modeling and optimization.  

In the GA, a population of strings (called chromosomes), which encode individual solutions 
towards an optimization problem, adjusts toward better solutions. The solutions are 
represented in binary strings. The evolution begins from a population of randomly 
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generated individuals and grows to produce next generations. In each generation, the fitness 
of each individual in the new population is evaluated and scored (recombination and 
mutation) to form a new population. During the fitness evaluation, the resulted ANN model 
is used. The new population is then used in the next iteration. The algorithm terminates 
when either a maximum generations number has been reached, or a best fitness level has 
been approached for the population. The multi-objective optimization can be formulated by 
converting the problem into a scalar single-objective optimization problem which is solvable 
by unconstrained single-response optimization technique. Many methods can be used for 
converting the problems into scalar optimization problem, such as weighted sum of squared 
objective functions (WSSOF), goal attainment, weighted sum strategy, and ε-constraint 
method. 

Schematic diagram of the feed-forward ANN used in this model development is depicted in 
Figure 1. Detail stepwise procedure used for the hybrid ANN-GA modelling and multi-
objectives optimization is modified from the previous publications (Istadi, 2006; Istadi & 
Amin, 2007). The modified algorithm is described in this section and is depicted 
schematically in Figure 2. The fit quality of the ANN model was checked by a correlation 
coefficient (R) or a determination coefficient (R2) and Mean Square Error (MSE). The ANN 
model generated was repeated until the R2 reached higher than 0.90. The commonly 
employed error function to check the fit quality of the model is the MSE as defined in 
Equation (2).  

 ( )2
, ,

1 1

1   
 

pi N k K

i k i k
p i k

MSE t y
N K

= =

= =
= −   (2) 

where Np and K denote the number of patterns and output nodes used in the training, i 
denotes the index of the input pattern (vector), and k denotes the index of the output node. 
Meanwhile, ti,k and yi,k express the desired (targeted or experimental) and predicted values 
of the kth output node at ith input pattern, respectively. 

With respect to the ANN modelling, a feed-forward ANN model was used in this model 
development which was trained using back-propagation training function. In general, four 
steps are developed in the training process: assemble the training data, create the network 
object, train the network, and simulate the network response to new inputs. The schematic 
of the feed-forward neural network used in the model development is depicted in Figure 1. 
As shown, the network consists of three layers nodes, i.e. input, hidden, and output layers 
comprising four numbers of each processing nodes. Each node in the input layer is linked to 
all nodes in the hidden layer and simultaneously the node in the hidden layer is linked to all 
nodes in the output layer using weighting connections (W). The weights are adjusted in the 
learning process in which all the patterns of input-output are presented in the learning 
phase repeatedly. In addition, the feed-forward neural network architecture also addresses 
the bias nodes which are connected to all nodes in subsequent layer, and they provide 
additional adjustable parameters (weights) for the fitting.  

From Figure 1, WH and WO denote the weights between input and hidden nodes and 
between hidden and output nodes, respectively. Meanwhile, yH and yO denote the outputs 
vector from hidden and output layers, respectively. In this system, bH and bO signify the 
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scalar bias corresponding to hidden and output layers, respectively. The weighted input (W) 
is the argument of the activation/transfer function f, which produces the scalar output y. 
The activation function net input is a summing function (nH or nO) which is the sum of the 
weighted input (WH or WO) and the bias b. In order that the ANN network accurately 
approximates the nonlinear relationship existing between the process inputs and outputs, it 
needs to be trained in a manner such that a pre-specified error function is minimized. There 
are many learning algorithms available and the most popular and successful learning 
algorithm used to train multilayer network is back-propagation scheme. Any output point 
can be obtained after this learning phase, and good results can be achieved.  

 

Process variables Responses/ Dependent variables 
(%) 

CH4/CO2 
ratio 
(X1) 

Discharge 
voltage 

(X2) 

Total feed 
flow rate (X3)

Reactor 
Temperature 

(X4) 

X(CH4)
(Y1) 

S(C2+)
(Y2) 

S(H2) 
(Y3) 

Y(C2+) 
(Y4) 

3.5 16.5 45 150 21.45 26.13 13.24 5.61 
3.5 16.5 25 150 23.48 33.41 12.13 7.85 

* 3.5 13.5 45 350 18.76 28.43 13.16 5.33 
1.5 16.5 25 350 27.55 27.47 8.11 7.57 
3.5 13.5 25 350 20.22 35.21 12.87 7.12 
1.5 13.5 45 150 23.11 26.98 8.01 6.24 
1.5 16.5 45 350 28.03 24.45 7.48 6.85 

* 1.5 13.5 25 150 30.02 24.15 8.54 7.25 
0.8 15.0 35 250 32.14 12.54 5.17 4.03 
4.2 15.0 35 250 21.12 34.77 13.99 7.34 
2.5 12.5 35 250 18.55 29.76 10.22 5.52 
2.5 17.5 35 250 41.32 28.01 10.12 11.57 
2.5 15.0 18 250 38.65 31.77 11.32 12.28 

* 2.5 15.0 52 250 20.88 30.00 11.56 6.26 
2.5 15.0 35 81 25.49 28.04 9.87 7.15 
2.5 15.0 35 418 26.74 32.55 10.41 8.70 
2.5 15.0 35 250 25.77 31.33 11.55 8.07 
2.5 15.0 35 250 23.41 30.74 9.87 7.20 
2.5 15.0 35 250 25.14 29.65 10.44 7.45 

* 2.5 15.0 35 250 26.11 28.14 9.54 7.35 

Note: X, S, and Y denote conversion, selectivity and yield, respectively, and C2+ comprises C2H4, C2H6, 
C2H2, C3H8. 
* These data were used as test set. 
X1 (CH4/CO2 feed ratio); X2 (Discharge voltage, kV); X3 (Total feed flow rate, cm3/min); X4 (Reactor 
wall temperature, oC); Pressure: 1 atm; Catalyst loading: 5 gram; Frequency: 2 kHz (pulse) 

Table 2. Experimental data of hybrid catalytic DBD plasma reactor at low temperature 
(Istadi, 2006) 
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Therefore, an input vector from the training set is applied to the network input nodes, and 
subsequently outputs of the hidden and output nodes are computed. The outputs are 
computed as follows: (a) the weighted sum of all the node-specific input is evaluated, which 
is then transformed using a nonlinear activation function (f), such as tangent-sigmoid 
(tansig) and linear (purelin) transfer functions for hidden and output layers, respectively; (b) 
the outputs from the output nodes {yi,k} are then compared with their target values {ti,k}, and 
the difference is used to compute the MSE (Equation 2); (c) upon the MSE computation, the 
weight matrices WH and WO are updated using the corresponding method (Levenberg-
Marquardt) (Hagan & Menhaj, 1994; Yao et al., 2005). 

In the back-propagation training method, the input x and target t values were normalized 
linearly to be within the range [-1 1]. The normalization of inputs and outputs leads to 
avoidance of numerical overflows due to very large or very small weights (Razavi et al., 
2003; Bowen et al., 1998; Yao et al., 2005). This normalization was performed to prevent 
mismatch between the influence of some input values to the network weights and biases. 
Network training was performed using Levenberg-Marquardt algorithm due to its fast 
convergence and reliability in locating the global minimum of the mean-squared error 
(MSE) (Levenberg-Marquardt) (Hagan & Menhaj, 1994; Yao et al., 2005). The transfer 
function at the hidden layer nodes is tangent sigmoid, which is nonlinear but differentiable. 
The output node utilizes the linear transfer function so that the input values n equal to the 
output values y. The normalized output values yn are retransformed to its original range 
(Razavi et al., 2003; Bowen et al., 1998; Yao et al., 2005).  

 
Fig. 1. A schematic diagram of the multi-layered perceptron (MLP) in feed-forward neural 
network with back-propagation training (X1: CH4/CO2 ratio; X2: discharge voltage; X3: total 
feed flow rate; X4: reactor temperature; yo1: CH4 conversion; yo2: C2 hydrocarbons selectivity; 
yo3: Hydrogen selectivity; and yo4: C2 hydrocarbons yield)  
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In terms of multi-objective optimization, GA was used for solving the scalar optimization 
problem based on the principle of survival of the fittest during the evolution. The GA 
implements the “survival of the fittest” and “genetic propagation of characteristics” 
principles of biological evolution for searching the solution space of an optimization 
problem. In nature, individuals must adapt to the frequent changing environment in order 
to survive. The GA is one of the strategic randomized search techniques, which are well 
known for its robustness in finding the optimal or near-optimal solution since it does not 
depend on gradient information in its walk of life to find the best solution. Various kinds of 
algorithm were reported by previous researchers (Tarca et al., 2002; Nandi et al., 2002, 2004; 
Kundu et al., 2009; Bhatti et al., 2011).  

The GA uses and manipulates a population of potential solutions to find optimal solutions. 
The generation is complete after each individual in the population has performed the 
genetic operators. The individuals in the population will be better adapted to the 
objective/fitness function, as they have to survive in the subsequent generations. At each 
step, the GA selects individuals at random from the current population to be parents and 
uses them to produce the children for the next generation. Over successive generation, the 
population evolves toward an optimal solution. The GA uses three main types of rules at 
each step to create the next generation from the current population: (a) Selection rules select 
the individuals, called parents, that contribute to the population at the next generation; (b) 
Crossover rules combine two parents to form children for the next generation; (c) Mutation 
rules apply random changes to individual parents to form children. 

The detail stepwise procedures for the hybrid ANN-GA algorithm for simultaneous 
modelling and optimization are described below and are depicted schematically in Figure 2: 

Step 1. (Development of an ANN-based model): Specify input and output experimental 
data of the system used for training and testing the ANN-based model. Create the 
network architecture involving input, hidden and output layers. Investigate the 
optimal network architecture (optimal number of hidden layer) and make sure that 
the network is not overfitted. 

Step 2. (Training of the ANN-based model): Normalize the experimental input and output 
data to be within the range [-1 1]. The normalization is performed to prevent 
mismatch between the influence of some input values to the network weights and 
biases. Train the network using the normalized data by utilizing a robust training 
algorithm (Levenberg-Marquardt). 

Step 3. (Initialization of solution population): Set the initial generation index (Gen) to zero 
and the number of population (Npop). Set the number of independent variables 
(nvars). Generate a random initial population of Npop individuals. Each individual 
possesses vector entries with certain length or called as genes which are divided into 
many segments based on the number of decision variables (nvars). 

Step 4. (Fitness computation): In this step the performance (fitness) of the solution vector 
in the current population is computed by using a fitness function. Normalize the 
solution vector xj to be within the range [-1 1]. Next, the vector xj is entered as 
inputs vector to the trained ANN-based model to obtain the corresponding outputs 
yj, yj=f(xj,W, b). Re-transform the output vector yj to the original values that are 
subsequently utilized to compute the fitness value/scores of the solution.  
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Fig. 2. Flowchart of the hybrid ANN-GA algorithms for modelling and optimization 

Step 5. (Scaling the fitness scores): Scale/rank the raw fitness scores to values in a range that 
is suitable for the selection function. In the GA, the selection function uses the scaled 
fitness values to choose the parents for the next generation. The range of the scaled 
values influences performance of the GA. If the scaled values vary too widely, the 
individuals with the highest scaled values reproduce too rapidly, taking over the 
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population gene pool too quickly, and preventing the GA from searching other areas 
of the solution space. On the other hand, if the scaled values vary only a little, all 
individuals have approximately the same chance of reproduction and the search will 
progress slowly. The scaling function used in this algorithm scales the raw scores 
based on the rank of each individual instead of its score. Because the algorithm 
minimizes the fitness function, lower raw scores have higher scaled values.  

Step 6. (Parents selection): Choose the parents based on their scaled values by utilizing the 
selection function. The selection function assigns a higher probability of selection to 
individuals with higher scaled values. An individual can be selected more than 
once as a parent.  

Step 7. (Reproduction of children): Reproduction options determine how the GA creates 
children for the next generation from the parents. Elite count (Echild) specifies the 
number of individuals with the best fitness values that are guaranteed to survive to 
the next generation. Set elite count to be a positive integer within the range: 1 ≤ Echild 
≤ Npop. These individuals are called elite children. Crossover fraction (Pcross) 
specifies the fraction of each population, other than elite children, that are produced 
by crossover. The remaining individuals in the next generation are produced by 
mutation. Set crossover fraction to be a fraction between 0 and 1. 

- Crossover: Crossover enables the algorithm to extract the best genes from different 
individuals by selecting genes from a pair of individuals in the current generation 
and recombines them into potentially superior children for the next generation 
with the probability equal to crossover fraction (Pcross) from Step 7.  

- Mutation: Mutation function makes small random changes in the individuals, 
which provide genetic diversity and thereby increases the likelihood that the 
algorithm will generate individuals with better fitness values.  

Step 8. (Replaces the current population with the children): After the reproduction is 
performed and the new children are obtained, the current populations are replaced 
with the children to form the next generation.  

Step 9. Update/increment the generation index): Increment the generation index by 1: 
Gen=Gen+1. 

Step 10. (Repeat Steps 4-9 until convergence is achieved): Repeat the steps 4-9 on the new 
generation until the convergences are met. The GA uses the following five criteria 
to determine when the algorithm stops: 

• Generations: the algorithm stops when the number of generation reaches the 
maximum value (Genmax). 

• Fitness limit: the algorithm stops when the value of the fitness function for the best 
point in the current population is less than or equal to Fitness limit. 

• Time limit: the algorithm stops after running for an amount of time in seconds equal 
to Time limit. 

• Stall generations: the algorithm stops if there is no improvement in the objective 
function for a sequence of consecutive generations of length Stall generations. 

• Stall time limit: the algorithm stops if there is no improvement in the objective 
function during an interval of time in seconds equal to Stall time limit.The algorithm 
stops if any one of these five conditions is met. 

Step 11. (Assign the top ranking of children to the optimal solution vector): After the GA 
convergence criteria is achieved, the children possessing top ranking of fitness 
value is assigned to the optimized population or decision variable vector, x*. 
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There is a vector of objectives, F(X) = {F1(X), F2(X),…, FM(X)} where M denotes the number 
of objectives, that must be considered in chemical engineering process. The optimization 
techniques are developed to find a set of decision parameters, X={X1, X2, …, XN} where N is 
the number of independent variables. As the number of responses increases, the optimal 
solutions are likely to become complex and less easily quantified. Therefore, the 
development of multi-objectives optimization strategy enables a numerically solvable and 
realistic design problem (Wu et al., 2002; Yu et al., 2003). In this method, a set of design goals, 
F* = {F1*, F2*, ..., FM*} is associated with a set of objectives, F(X) = {F1(X), F2(X),…, FM(X)}. The 
multi-objectives optimization formulation allows the objectives to be under- or over-
achieved which is controlled by a vector of weighting coefficient, w={w1, w2, ..., wM}. The 
optimization problem is formulated as follow: 

 
1 1 1, x  

2 2 2

inimize     subject to      

                                              

m F (x) - w γ F *

F (x) - w γ F *
γ

γ
∈ Ω

≤

≤
 (3) 

Specification of the goals, (F1*, F2*), defines the goal point. The weighting vector defines the 
direction of search from the goal point to the feasible function space. During the 
optimization, γ is varied which changes the size of the feasible region. The constraint 
boundaries converge to the unique solution point (F1s, F2s). 

3. Results and discussion 

3.1 Development and testing of artificial neural network – Genetic algorithm model  

In developing a phenomenological model, it is mandatory to consider detailed kinetics of 
stated multiple reactions in the conservation equations. However, due to the tedious 
procedures involved in obtaining the requisite kinetic information within phenomenological 
model, the empirical data-based ANN-GA modelwas chosen for maximizing the process 
performances. In this study, simultaneous modeling and multi-objectives optimization of 
catalytic-plasma reactor for methane and carbon dioxide conversions to higher 
hydrocarbons (C2) and hydrogen was done. The purpose of multi-objectives optimization is 
to maximize the process performances simultaneously, i.e. CH4 conversion (Y1) and C2 
hydrocarbons yield (Y4). Accordingly, four parameters namely CH4/CO2 ratio (X1), 
discharge voltage (X2), total feed flow rate (X3), and reactor temperature (X4), generate input 
space of the ANN model. In the ANN model, the four parameters and four targeted 
responses (CH4 conversion (yo1), C2 hydrocarbons selectivity (yo2), Hydrogen selectivity (yo3), 
and C2 hydrocarbons yield (yo4) were developed and simulated. 

Regarding the simultaneous modeling and optimization using the ANN-GA method (Figure 
2), accuracy of the hybrid method was validated by a set of simple discrete data extracted 
from a simple quadratic equation (i.e. y= -2x2 + 15x + 5). From the testing, the determination 
coefficient (R2) of the method closes to 1 means the empirical method (ANN-GA) has a good 
fitting, while the relative error of the optimized results (comparison between GA results and 
analytical solution) are below 10%.  

In this chapter, Multi Input and Multi Output (MIMO) system with 4 inputs and 4 outputs 
of the ANN model was developed. Prior to the network training, numbers of experimental 
data (Table 2) were supplied into the training. The data were obtained based on the 
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experimental design (central composite design) as revealed in Tables 1 and 2. In each 
network training, the training data set was utilized for adjusting the weight matrix set, W. 
The performance of the ANN model is considered as fitness tests of the model, i.e. MSE, R, 
and epoch number (epochs). Comparison of the ANN model performance for various 
topologies was performed. The MSE decreases and R increases with increasing number of 
nodes in the hidden layer. However, increasing number of hidden layer takes more time in 
computation due to more complexity of the model. Therefore, optimization of layer number 
structure is important step in ANN modeling. 

The ANN model fitness in terms of comparison between targeted (t) and predicted (y) 
performances is shown in Figures 3 and 4. In the figures, the ANN models are fit well to the 
experimental data which is demonstrated by high determination coefficients (R2) of 0.9975 
and 0.9968 with respect to CH4 conversion (y1) and C2 hydrocarbons yield (y2) models, 
respectively. The high R2 and low MSE value implies a good fitting between the targeted 
(experimental) and the predicted (calculated) values. Therefore, the ANN-based models are 
suitable for representing the plasma-catalytic conversion of methane and carbon dioxide to 
higher hydrocarbons. From the simulation, the hybrid ANN-GA algorithm is supposed to 
be powerful for simultaneous modeling and optimizing process conditions of the complex 
process as inline with the previous literatures (Istadi & Amin, 2006, 2007) with similar 
algorithm. The R2 by this method is high enough (higher than 0.95). The ANN-GA model has 
advantageous on the fitted model which is a complex non linear model. This is to improve the 
weaknesses of the response surface methodology that is forced to quadratic model. 

3.2. Multi-objective oOptimization of DBD plasma - Catalytic reactor performances 

In this study, simultaneous modeling and multi-objective optimization of catalytic-plasma 
reactor for methane and carbon dioxide conversions to higher hydrocarbons (C2) and 
hydrogen was performed. The multi-objective optimization is aimed to maximize the CH4 
conversion (Y1) and C2 hydrocarbons yield (Y4) simultaneously. Accordingly, four respected 
parameters, namely CH4/CO2 ratio (X1), discharge voltage (X2), total feed flow rate (X3), and 
reactor temperature (X4) are optimized stated as input space of the ANN model. In the ANN 
model, the four parameters and four targeted responses (CH4 conversion (yo1), C2 
hydrocarbons selectivity (yo2), hydrogen selectivity (yo3), and C2 hydrocarbons yield (yo4)) 
were developed and simulated. In this case, two responses or objectives can be optimized 
simultaneously to obtain optimum four respected process parameters, i.e. CH4 conversion 
and C2 hydrocarbons yield (yo1 and yo4), CH4 conversion and C2hydrocarbon selectivity (yo1 
and yo2), or CH4 conversion and hydrogen selectivity (yo1and yo3). For maximizing F1 and F4 
(CH4 conversion and C2hydrocarbons yield, respectively), the actual objective functions are 
presented in Equation 4 which is one of the popular approaches for inversion (Deb, 2001; 
Tarafder et al., 2005). The equation was used due to the default of the optimization function 
is minimization. 

 
,

1
1i

i o

F
F
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 (4) 

where Fi,o denotes the real objective functions, while Fi is the inverted objective functions for 
minimization problem. 
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For the multi-objectives optimization, the decision variables/operating parameters bound 
were chosen from the corresponding bounds in the training data as listed in Table 3. 
Meanwhile, Table 4 lists the numerical parameter values used in the GA for all optimization 
runs. In this optimization, rank method was used for fitness scaling, while stochastic 
tournament was used for selection method to specify how the GA chooses parents for the 
next generation. Meanwhile, scattered method was chosen for crossover function and 
uniform strategy was selected for mutation function. From the 40 numbers of population 
size, two of them are elite used in the next generation, while 80% of the rest population was 
used for crossover reproduction and 20% of them was used for mutation reproduction with 
5% rate. 
 

Operating Parameters Bounds 
CH4/CO2 feed ratio 1.5 ≤ X1 ≤ 4.0 
Discharge voltage (kV) 12 ≤ X2 ≤ 17 
Total feed flow rate (cm3/min) 20 ≤ X3 ≤ 40 
Reactor temperature (oC) 100 ≤ X4 ≤ 350 

Table 3. Operating parameters bound used in multi-objectives optimization of DBD plasma 
reactor without catalyst 
 

Computational Parameters Values 
Population size 40 
Elite count 2 
Crossover fraction 0.80 
Number of generation 20 
Fitness scaling function fitscalingrank 
Selection function selectiontournament 
Crossover function crossoverscattered 
Mutation function mutationuniform 
Mutation probability 0.05 

Table 4. Computational parameters of GA used in the multi-objectives optimization 

The Pareto optimal solutions owing to the simultaneous CH4 conversion and C2 
hydrocarbons yield and the corresponding four process parameters are presented in Figure 
5. The Pareto optimal solutions points are obtained by varying the weighting coefficient (wk) 
in Equation (3) (goal attainment method) and performing the GA optimization 
corresponding to each wk so that the γ reaches its minimum value (Fk(x)-wk.γ ≤ Fk) (goal). 
From Figure 5, it was found in the Pareto optimal solution that if CH4 conversion improves, 
C2hydrocarbons yield deteriorates or vice versa. Theoretically, all sets of non-
inferior/Pareto optimal solutions are acceptable. The maximum CH4 conversion and C2 
hydrocarbons yield of 48 % and 15 %, respectively are recommended at corresponding 
optimum process parameters of CH4/CO2 feed ratio 3.6, discharge voltage 15 kV, total feed 
flow rate 20 cm3/min, and reactor temperature of 147 oC. Larger CH4 amount in the feed 
and higher feed flow rate enhance the C2+ hydrocarbons yield which is corroborated with 
the results of Eliasson et al. (2000). From the Pareto optimal solutions and the corresponding 
optimal operating parameters, the suitable operating conditions ranges for DBD plasma 
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reactor owing to simultaneous maximization of CH4 conversion and C2hydrocarbons yield 
can be recommended easily.  

 
Fig. 3. Comparison of targeted (experimental) and predicted (calculated) CH4 conversion of 
the ANN model (R2=0.9975) (* : test set data) 

 
Fig. 4. Comparison of targeted (experimental) and predicted (calculated) C2 hydrocarbons 
yield of the ANN model (R2=0.9968) (* : test set data) 
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Fig. 5. Pareto optimal solutions with respect to multi-objectives optimization of CH4 
conversion (Y1) and C2hydrocarbons yield (Y2).  

3.3 Effect of hybrid catalytic-plasma DBD reactor for CH4 and CO2 conversions 

When a gas phase consisting electrically neutral species, electrons, ions and other excited 
species flow through the catalyst bed, the catalyst particles become electrically charged. 
The charge on the catalyst surface, together with other effects of excited species in the gas 
discharge leads to the variations of electrostatic potential of the catalyst surface. The 
chemisorption and desorption performances of the catalyst therefore may be modified in 
the catalyst surface (Jung et al., 2004; Kraus et al., 2001). Effects of these modifications on 
methane conversion are dependent on the amount and concentration of surface charge 
and the species present at the catalyst surface (Kim et al., 2004). The combining DBD 
plasma and a heterogeneous catalyst are possible to activate the reactants in the discharge 
prior to the catalytic reaction, which should have positive influences on the reaction 
conditions.  

Comparison of the application of DBD plasma technology in CH4 and CO2 conversion with 
catalyst is studied in this research. Since most of the energetic electrons are required to 
activate the CH4 and CO2 gases in a discharge gap, special consideration must be taken in 
the designing a reactor that maximizes the contact time between the energetic electrons and 
the neutral feed gas species. The catalyst located in the discharge gap is an alternative way 
to increase the time and area of contact between gas molecules and energetic electrons in 
addition to other modification of electronic properties. The energetic electrons determine the 
chemistry of the conversions of both gases (Eliasson et al., 2000; Yao et al., 2000; Zhou et al., 
1998). The nature of dielectric and electrode surfaces is also an important factor for products 
distribution of CH4 and CO2 conversions using the DBD.  
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In the catalytic DBD plasma reactor system, the catalyst acts as a dielectric material. Most of 
the discharge energy is used to produce and to accelerate the electrons generating highly 
active species (metastable, radicals and ions). The combined action of catalysts and a non-
equilibrium gas discharge leads to an alternative method for production of syngas and 
hydrocarbons from CH4 and CO2. When an electric field is applied across the packed 
dielectric layer, the catalyst is polarized and the charge is accumulated on the dielectric 
surface. An intense electric field is generated around each catalyst pellet contact point 
resulting in microdischarges between the pellets. The microdischarges in the packed-bed of 
catalyst produced energetic electrons rather than ions. The microdischarges induced a 
significant enrichment of electrons that were essential for the sustainability of plasmas. 
Methane and carbon dioxide were chemically activated by electron collisions. Liu et al. 
(1997) concluded that the electronic properties of catalysts have an important role in 
oxidative coupling of methane using DBD plasma reactor. The electronic properties and 
catalytic properties can be expected to be changed if the catalyst is electrically charged. 

From the non-catalytic DBD plasma reactor, it is shown that the plasma process seems to be 
less selective than conventional catalytic processes, but it has high conversion. The 
conventional catalytic reactions on the other hand can give high selectivity, but they require 
a certain gas composition, an active catalyst, and high temperature condition (endothermic 
reaction). In the hybrid catalysis-plasma, the catalyst has important roles such as increasing 
the reaction surface area, maintaining and probably increasing the non-equilibrium 
properties of gas discharge, acting as a dielectric-barrier material, and improving the 
selectivity and efficiency of plasma processes by surface reactions. The catalyst placed in the 
plasma zone can influence the plasma properties due to the presence of conductive surfaces 
in the case of metallic catalysts (Heintze & Pietruszka, 2004; Kizling & Järås, 1996). The 
catalyst can also change the reaction products due to surface reactions. The heating and 
electronic properties of the catalyst by the plasma induce chemisorption of surface species. 
A synergy between the catalyst and the plasma is important so that the interactions lead to 
improved reactant conversions and higher selectivity to the desired products. However 
until now, the exact role of the catalyst in the DBD plasma reactor is still not clear from the 
chemistry point of view. Even the kind of plasma reactor determines the product selectivity 
(Gordon et al., 2001). The most significant influence of the plasma was observed at low 
temperatures (Liu et al., 2001b) at which the catalysts were not active. At higher 
temperatures the catalysts became active; nonetheless, the plasma catalytic effect was still 
observed (Huang et al., 2000). 

3.4. Simulation of DBD plasma - Catalytic reactor performances  

This section demonstrates ANN simulation for the effect of operating parameters (X1, X2, X3, 
X4) in catalytic DBD plasma reactor on CH4 conversion (y1) and C2 hydrocarbons yield (y4). 
The simulation results were presented in three dimensional surface graphics (Figures 6 to 
13). From the results, the CH4 conversion and C2 hydrocarbons yield are affected by 
CH4/CO2 feed ratio, discharge voltage, total feed flow rate, and reactor wall temperature 
from the ANN-based model simulation.  

Figures 6, 7, 8, and 9 simulates the effect of discharge voltage, CH4/CO2 feed ratio, total feed 
flow rate, and reactor temperature on the methane conversion. Increasing the discharge 
voltage improves methane conversion significantly. That is true because energy of energetic  
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Fig. 6. Effect of discharge voltage (X2) and CH4/CO2 ratio (X1) toward methane conversion (y1) 

 
Fig. 7. Effect of total flow rate (X3) and CH4/CO2 ratio (X1) toward methane conversion (y1) 

electrons is dependent on the discharge voltage. Higher the discharge voltage, higher the 
energy of electrons flows from high voltage electrode to ground electrode. Increasing the 
CH4 concentration in the feed favors the selectivity of C2 hydrocarbons and hydrogen 
significantly, but the C2 hydrocarbons yield is slightly affected due to the decrease of CH4 
conversion. It is suggested that the CH4 concentration in the feed is an important factor for 
the total amount of hydrocarbons produced. However, increasing CH4/CO2 ratio to 4 
reduces the methane conversion considerably and leads to enhanced C2 hydrocarbons 
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selectivity and H2/CO ratio. It is confirmed that CO2 as co-feed has an important role in 
improving CH4 conversion by contributing some oxygen active species from the CO2. This 
phenomenon is corroborated with the results of Zhang et al. (2001).  

Effect of total feed flow rate on methane conversion is displayed in Figures 7 and 8. From 
the figures, total feed flow rate has significant effect on methane conversion. Higher the total 
feed flow rate, lower methane conversion. This is due to primarily from short collision of 
energetic electrons with feed gas during flow through the plasma reactor. Therefore, only a 
few reactant molecules that has been cracked by the energetic electrons.  

 
Fig. 8. Effect of total flow rate (X3) and discharge voltage (X2) toward methane conversion (y1) 

 
Fig. 9. Effect of reactor temperature (X4) and discharge voltage (X2) toward methane 
conversion (y1) 
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Figures 10, 11, 12, and 13presents the effect of discharge voltage, CH4/CO2 feed ratio, total 
feed flow rate, and reactor temperature on the C2 hydrocarbons yield. The yield of gaseous 
hydrocarbons (C2) increases with the CH4/CO2 feed ratio as exhibited in Figure. It is 
possible to control the composition of C2 hydrocarbons and hydrogen products by adjusting 
the CH4/CO2 feed ratio. Increasing CH4/CO2 ratio above 2.5 exhibits dramatic enhancement 
of C2hydrocarbons yield and lowers CH4 conversion slightly. In this work, the composition 
of the feed gas is an essential factor to influence the product distribution. Obviously, more 
methane in the feed will produce more light hydrocarbons.  

In comparison with non-catalytic DBD plasma reactor, the enhancement of reactor 
performance is obtained when using the hybrid catalytic-DBD plasma reactor (Istadi, 2006). 
The CH4 conversion, C2 hydrocarbons selectivity, C2 hydrocarbons yield and H2 selectivity 
of catalytic DBD plasma reactor is higher than that without catalyst (Istadi, 2006). The 
catalyst located in the discharge gap can increase the time and area of contact in addition to 
other modification of electronic properties. Therefore, collision among the energetic 
electrons and the gas molecules is intensive. Through the hybrid system, the chemisorption 
and desorption performances of the catalyst may be modified in the catalyst surface (Jung et 
al., 2004; Kraus et al., 2001) which is dependent on the amount and concentration of surface 
charge and the species on the catalyst surface (Kim et al., 2004). The results enhancement 
was also reported by Eliasson et al. (2000) over DBD plasma reactor with high input power 
500 W (20 kV and 30 kHz) that the zeolite catalyst introduction significantly increased the 
selectivity of light hydrocarbons compared to that in the absence of zeolite.  

Varying the discharge power/voltage affects predominantly on methane conversion and 
higher hydrocarbons (C2) yield and selectivity. At high discharge voltage the CH4 
conversion becomes higher than that of CO2 as presented in Table 2, since the dissociation 
energy of CO2 (5.5 eV) is higher than that of CH4 (4.5 eV) as reported by Liu et al. (1999a). 
More plasma species may be generated at higher discharge voltage. Previous researchers 
suggested that the conversions of CH4 and CO2 were enhanced with discharge power in a 
catalytic DBD plasma reactor (Caldwell et al., 2001; Eliasson et al., 2000; Zhang et al., 2001) 
and non-catalytic DBD plasma reactor (Liu et al., 2001b). From Figures10 and 12, the yield of 
C2 hydrocarbons decreases slightly with the discharge voltage which is corroborated with 
the results of Liu et al. (2001b). This means that increasing discharge power may destroy the 
light hydrocarbons (C2-C3). In this research, the lower range of discharge power (discharge 
voltage 12 - 17 kV and frequency 2 kHz) does not improve the H2 selectivity over DBD 
plasma reactor although the catalyst and the heating was introduced in the discharge space 
as exhibited in Figures 9 and 13. Eliasson et al. (2000) reported that higher discharge power 
is necessary for generating higher selectivity to higher hydrocarbons (C5+) over DBD plasma 
reactor with the presence of zeolite catalysts. Higher discharge power is suggested to be 
efficient for methane conversion. As the discharge power increases, the bulk gas 
temperature in the reaction zone may also increase. 

The total feed flow rate also affects predominantly on residence time of gases within the 
discharge zone in the catalytic DBD plasma reactor. Therefore, the residence time influences 
collisions among the gas molecules and the energetic electrons. Increasing the total feed 
flow rate reduces the residence time of gases and therefore decreases the C2 hydrocarbons 
yield dramatically as demonstrated in Figures 11 and 12. A lower feed flow rate is beneficial 
for producing high yields light hydrocarbons (C2+) and synthesis gases with higher H2/CO 
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ratio as reported by Li et al. (2004c). The hydrogen selectivity is also affected slightly by the 
total feed flow rate within the range of operating conditions. Indeed, the total feed flow rate 
affects significantly on the methane conversion rather than yield of C2 hydrocarbons. 
Actually, the low total feed flow rate (high residence time) leads to high intimate collision 
among the gas molecules, the catalyst and high energetic electrons. The high intensive 
collisions favor the methane and carbon dioxide conversions to C2+ hydrocarbons. 

From Figures 9 and 13, it is evident that the current range of reactor temperature only affects 
the catalytic - DBD plasma reactor slightly. The methane conversion and C2 hydrocarbons 
yield is only affected slightly by reactor wall temperature over the CaO-MnO/CeO2 catalyst. 
This may be due to the altering of the catalyst surface phenomena and the temperature of 
energetic electrons is quite higher than that of reactor temperature. The adsorption-
desorption, heterogeneous catalytic and electronic properties of the catalysts may change 
the surface reaction activity when electrically charged. However, the chemistry and physical 
phenomena at the catalyst surface cannot be determined in the sense of traditional catalyst. 
Some previous researchers implied that the synergistic effect of catalysis-plasma only 
occurred at high temperature where the catalyst was active. Huang et al. (2000) and Heintze 
& Pietruszka (2004) pointed out that the product selectivity significantly improved only if 
the temperature was high enough for the catalytic material to become itself active. Zhang et 
al. (2001) also claimed that the reactor wall temperature did not significantly affect the 
reaction activity (selectivity) over zeolite NaY catalyst under DBD plasma conditions at the 
temperature range tested (323-423 K). Particularly, increasing the wall temperature at the 
low temperature range tested did not affect the reaction activity under plasma conditions. In 
contrast, some other researchers suggested that the synergistic effect of catalysis – plasma 
may occur at low temperature. Based on the ANN-based model simulation, it can be 
suggested that low total feed flow rate, high CH4/CO2 feed ratio, high discharge voltage 
and proper reactor temperature are suitable for producing C2+ hydrocarbons and synthesis 
gas over catalytic DBD plasma reactor.  

 
Fig. 10. Effect of discharge voltage (X2) and CH4/CO2 ratio (X1) toward C2 hydrocarbons 
yield (y4) 



Different Tools on Multi-Objective Optimization of a Hybrid Artificial 
Neural Network – Genetic Algorithm for Plasma Chemical Reactor Modelling 

 

21 

 
 

 
 

Fig. 11. Effect of total feed flowrate (X3) and CH4/CO2 ratio (X1) toward C2 hydrocarbons 
yield (y4) 

 

 
 
Fig. 12. Effect of total feed flowrate (X3) and discharge voltage (X2) toward C2 hydrocarbons 
yield (y4) 
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Fig. 13. Effect of reactor temperature (X4) and discharge voltage (X2) toward C2 
hydrocarbons yield (y4) 

4. Conclusions 

A hybrid ANN-GA was successfully developed to model, to simulate and to optimize 
simultaneously a catalytic–DBD plasma reactor. The integrated ANN-GA method facilitates 
powerful modeling and multi-objective optimization for co-generation of synthesis gas, C2 
and higher hydrocarbons from methane and carbon dioxide in a DBD plasma reactor. The 
hybrid approach simplified the complexity in process modeling of the DBD plasma reactor. 
In the ANN model, the four parameters and four targeted responses (CH4 conversion (yo1), 
C2 hydrocarbons selectivity (yo2), hydrogen selectivity (yo3), and C2 hydrocarbons yield (yo4) 
were developed and simulated. In the multi-objectives optimization, two responses or 
objectives were optimized simultaneously for optimum process parameters, i.e. CH4 
conversion (yo1) and C2 hydrocarbons yield (yo4). Pareto optimal solutions pertaining to 
simultaneous CH4 conversion and C2 hydrocarbons yield and the corresponding process 
parameters were attained. It was found that if CH4 conversion improved, C2 hydrocarbons 
yield deteriorated, or vice versa. Theoretically, all sets of non-inferior/Pareto optimal 
solutions were acceptable. From the Pareto optimal solutions and the corresponding optimal 
operating parameters, the suitable operating condition range for DBD plasma reactor for 
simultaneous maximization of CH4 conversion and C2 hydrocarbons yield could be 
recommended easily. The maximum CH4 conversion and C2 hydrocarbons yield of 48 % and 
15 %, respectively were recommended at corresponding optimum process parameters of 
CH4/CO2 feed ratio 3.6, discharge voltage 15 kV, total feed flow rate 20 cm3/min, and 
reactor temperature of 147 oC. 

5. Abbreviations 

ANN  : artificial neural network 
GA  : genetic algorithm 
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ANN-GA : artificial neural network – genetic algorithm 
DBD  : dielectric-barrier discharge 
NSGA  : non-dominated sorting genetic algorithm 
CO2 OCM : carbon dioxide oxidative coupling of methane 
O2 OCM  : oxygen oxidative coupling of methane 
CCD  : central composite design 
MSE  : mean square error 
MLP  : multi-layered perceptron 
WSSOF  : weighted sum of square objective function 
MIMO  : multi input multi output 
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1. Introduction  

Technological advances in the field of microwave and communication systems and the 
increase of their commercial applications in recent years have resulted in more stringent 
requirements for innovative design of microwave passive devices, such as: antennas, filters, 
power splitters and couplers, frequency selective surfaces, etc. To be competitive in the 
commercial marketplace, microwave engineers may be using computer-aided design (CAD) 
tools to minimize cost and design cycle times. Modern CAD tools have become an integral 
part of the microwave product cycle and demand powerful optimization techniques combined 
with fast and accurate models so that the optimal solutions can be achieved, eventually 
guaranteeing first-pass design success. The target of microwave device design is to determine 
a set of physical parameters to satisfy certain design specifications (Mohamed, 2005). 

Early methods of designing and optimizing microwave devices by hand are time and labor 
intensive, limit complexity, and require significant expertise and experience. Many of the 
important developments in microwave engineering were made possible when complex 
electromagnetic characteristics of microwave devices were represented in terms of circuit 
equivalents, lumped elements and transmission lines. Circuit simulators using 
empirical/analytical models are simple and efficient, reduce optimization time, but have 
limited accuracy or validity region. Although circuit simulator is still used today it suffers 
from some severe limitations (the most serious of them is that it considers only fundamental 
mode interactions) and requires corrections in the form of post manufacturing tuning 
(Fahmi, 2007).  

While developments in circuit simulators were taking place, numerical electromagnetic 
(EM) techniques were also emerging. With the computational power provided by modern 
computers, the use of accurate full-wave electromagnetic models by EM simulators for 
design and optimization of microwave devices became possible. By using full-wave 
electromagnetic methods higher order modes are taken into consideration and microwave 
devices can be rigorously characterized in the designs so that simulation and experimental 
results are in close agreement. This is particularly of interest for the rapid large scale 
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production of low-cost high performance microwave devices reducing or eliminating the 
need of post manufacturing tuning (Bandler et al., 1994; Fahmi, 2007). 

The EM simulators can simulate microwave device structures of arbitrary geometrical 
shapes and ensure a satisfactory degree of accuracy up to millimeter wave frequencies 
(Mohamed, 2005). These simulators are based on EM field solvers whose function is to solve 
the EM problem of the structure under analysis, which is described by the Maxwell´s 
equations. Thus, the design of electromagnetic structures is usually a very challenging task 
due to the complexity of the models involved. In the majority of cases, there are no simple 
analytical formulas to describe the performance of new microwave devices. However, the 
use of EM field solver for device optimization is still a time consuming procedure and need 
heavy computations. For complex problems, resulting in very long design cycles, this 
computational cost may be prohibitive (Haupt & Werner, 2007).  

Actually, many approaches are available to implement optimization using full-wave 
methods. For instance, the exploitation of commercial EM software packages inside the 
optimization loop of a general purpose optimization program. New techniques, such as 
geometry capture (Bandler et al., 1996) (suitable for automated EM design of arbitrary three-
dimensional structures), space mapping (Bandler et al., 1994) (alternative design schemes 
combining the speed of circuit simulators with the accuracy of EM solvers), adjoint network 
concept (Nikolova et al., 2004), global optimization techniques based on bio-inspired 
algorithms, knowledge based methods, and artificial neural networks (ANNs), establish a 
solid foundation for efficient optimization of microwave device structures (Haupt & 
Werner, 2007; Zhang & Gupta, 2000; Silva et al., 2010a).   

This chapter presents a new fast and accurate EM optimization technique combining full-
wave method of moments (MoM), bio-inspired algorithms, continuous genetic algorithm 
(GA) and particle swarm optimization (PSO), and multilayer perceptrons (MLP) artificial 
neural networks. The proposed optimization technique is applied for optimal design of 
frequency selective surfaces with fractal patch elements. A fixed FSS screen geometry is 
choose a priori and then optimizing a smaller subset of FSS design variables to achieve a 
desired bandstop filter specification. 

A frequency selective surface (FSS) is a two-dimensional array of periodic metallic elements 
on a dielectric layer or two-dimensional arrays of apertures within a metallic screen. This 
surface exhibits total reflection or transmission for patch and aperture elements, 
respectively. The most important parameters that will determine the overall frequency 
response of a FSS are: element shape, cell size, orientation, and dielectric layer properties. 
FSSs have been widely used as spatial filters for plane waves in a variety of applications, 
such as: microwave, optical, and infrared filters, bandpass radomes, microwave absorbers, 
polarizers, dichroic subreflectors, antenna systems, etc. (Munk, 2000).  

Several authors proposed the design of FSS using fractals. In this chapter, different fractal 
geometries are considered, such as: Koch, Dürer’s pentagon, and Sierpinski. While the use of 
space-filling fractal properties (e.g., Koch, Minkowski, Hilbert) reduce the overall size of the 
FSS elements (Oliveira et al., 2009; Campos et al., 2010), the attractive features of certain self-
similar fractals (e.g., Sierpinski, Gosper, fractal tree, etc.) have received attention of 
microwave engineers to design multiband FSS.  Many others self-similar geometries have 
been explored in the design of dual-band and dual polarized FSS (Gianvittorio et al., 2001). 
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The self-similarity property of these fractals enables the design of multiband fractal 
elements or fractal screens (Gianvittorio et al., 2003). Furthermore, as the number of fractal 
iterations increases, the resonant frequencies of these periodic structures decrease, allowing 
the construction of compact FSSs (Cruz et al., 2009). In addition, an FSS with fractal elements 
present resonant frequency that is almost independent of the plane-wave incidence angle. 

There is no closed form solution directly from a given desired frequency response to the 
corresponding FSS with fractal elements. The analysis of scattering characteristics from FSS 
devices requires the application of rigorous full-wave techniques. Besides that, due to the 
computational complexity of using a full-wave simulator to evaluate the FSS scattering 
variables, many electromagnetic engineers still use trial-and-error process until to achieve a 
given design criteria. Obviously this procedure is very laborious and human dependent. On 
the other hand, calculating the gradient of the scattering coefficients in terms of the FSS 
design variables is quite difficult. Therefore, optimization techniques are required to design 
practical FSSs with desired filter specifications. Some authors have been employed neural 
networks, PSO, and GA for FSS design and optimization (Manara et al., 1999; Hussein & El-
Ghazaly, 2004; Silva et al., 2010b).  

The main computational drawback for EM optimization of FSSs based on bio-inspired 
algorithms relies on the repetitive evaluation of numerically expensive fitness functions. 
Due the expensive computation to calculate the scattering variables for every population 
member at multiple frequencies over many generations, several schemes are available to 
improve the GA performance for optimal design of FSSs, such as: the use of fast full-wave 
methods, micro-genetic algorithm, which aims to reduce the population size, and parallel 
GA using parallel computation. However, despite of these improvements done on the EM 
optimization using genetic algorithms, all the same several hours are required for expensive 
computational simulations of GA optimization (Haupt & Werner, 2007; Silva et al., 2010b).   

The application of ANNs as approximate fitness evaluation tools for genetic algorithms, 
though suggest often, had seldom been put to practice. The combination of ANNs and GAs 
has been applied mainly for the construction of optimized neural networks through GA-
based optimization techniques. Few applications of ANNs to GA processing have been 
reported for EM optimization of microwave devices. 

The advantages of the MoM-ANN-GA/PSO optimization technique are discussed in terms 
of convergence and computational cost. This technique is applied for optimal design of 
bandstop FSS spatial filters with fractal elements considering the resonant frequency (fr) and 
bandwidth (BW) bandstop specifications. Some FSS prototypes with fractal elements are 
built and measured. The accuracy of the proposed optimization technique is verified by 
means of comparisons between theoretical and experimental results.  

2. An overview of bio-inspired optimization technique  

The idea of blending full-wave methods, artificial neural networks, and bio-inspired 
optimization algorithms for electromagnetic optimization of FSS spatial filters was first 
proposed in 2007 (Silva et al., 2007). This optimization technique named MoM-ANN-GA 
replaces the computational intensive full-wave method of moments simulations by a fast 
and accurate MLP neural network model of FSS spatial filter, which is used to compute the 
cost (or fitness) function in the genetic algorithm iterations.  
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The proposed bio-inspired EM optimization technique starts with the definition of a FSS 
screen geometry that is choose a priori. A full-wave parametric analysis is carried out for 
accurate EM characterization of FSS spatial filter scattering properties. From obtained EM 
dataset, a MLP network is trained to establish the complicated relationships between FSS 
design variables and frequency response. Then, in order to overcome the computational 
requirements associated with full-wave numerical simulations, the developed MLP model is 
used for fast and accurate evaluation of fitness function into bio-inspired algorithm 
simulations. From the optimal design of FSS parameters, FSS prototypes are fabricated and 
measured for verification of optimization methodology. Fig. 1 gives a “big picture” 
overview of proposed bio-inspired EM optimization technique. 

 
Fig. 1. An overview of proposed bio-inspired optimization technique  

This section is a brief introduction that provides an overview of the proposed optimization 
technique to be presented. The overview includes fundamentals of multilayer perceptrons, 
continuous genetic algorithm, and particle swarm optimization.  

2.1 Artificial neural networks 

Since the beginning of the 1990s, the artificial neural networks have been used as a flexible 
numerical tool, which are efficient for modeling of microwave devices. In the CAD 
applications related to microwave engineering, the use of ANNs as nonlinear models 
becomes very common. Neural network models trained by accurate EM data (obtained 
through measurements or by EM simulations) are used for fast and accurate 
design/optimization of microwave devices. In addition, the use of previously established 
knowledge in the microwave area (as empirical models) combined with the neural 
networks, results in a major reliability of the resulting hybrid model – with a major ability to 
learn nonlinear input-output mappings, as well as to generalize responses, when new values 
of the input design variables are presented. Another important advantage is the data 
amount reduction necessary for the neural networks training. Some hybrid modeling 
techniques have been proposed for the use with empirical models and neural networks, 
such as: Source Difference Method, PKI (Prior Knowledge Input), KBNN (Knowledge Based 
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Neural Network), and SMANN (Space Mapping Artificial Neural Network) (Zhang & 
Gupta, 2000). 

Versatility, efficient computation, reduced memory occupation, stability of learning 
algorithms, and generalization from representative data, are some characteristics that have 
motivated the use of neural networks in many areas of microwave engineering as models 
for complex ill-defined input-output mappings in new, not well-known microwave devices 
(Santos et al., 1997; Patnaik & Mishra, 2000; Zhang & Gupta, 2000). As mentioned 
previously, the electromagnetic behavior of a microwave device is extremely complex and 
simple empirical model cannot accurately describe its behavior under all conditions. Only 
with a detailed full-wave device model, more accurate results can be found. In general, the 
quality of simulation is decided by the accuracy of device models. On the other hand, a very 
detailed model would naturally slow down the program. A compromise between accuracy 
and speed of computation has to be struck. Using neural networks enables to overcome this 
problem (Silva et al., 2010a). 

The multilayer perceptrons is the most used artificial neural network for neuromodeling 
applications. Multilayer perceptrons artificial neurons are based on the nonlinear model 
proposed by (McCulloch & Pitts, 1943; Rosenblatt, 1958, as cited in Haykin, 1999). In this 
model, neurons are signal processing units composed by a linear combiner and an activation 
function, that can be linear or nonlinear, as shown in Fig. 2.  

 
Fig. 2. Nonlinear model of an artificial neuron 

The input signals are defined as ix , ii 0,1, ,N=  , where Ni is the number of input units. 
The output of linear combiner corresponds to the neuron level of internal activity jnet , as 
defined in (1). The information processed by neuron is storage in weights jiw , 1, ,N jj =  , 
where N j is the number of neurons in a given neural network layer; 0 1x = ±  is the 
polarization potential (or threshold) applied to the neurons. The neuron output signal jy  is 
the value of the activation function ( )ϕ ⋅ in response to the neuron activation potential jnet , as 
defined in (2).  

 
Ni

j ji i
i 0

wnet x
=

= ⋅  (1) 

 j jy ( )netϕ=  (2) 
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Multilayer perceptrons presents a feed forward neural network (FNN) configuration with 
neurons set into layers. Each neuron of a layer is connected to those of the previous layer, as 
illustrated in Fig. 3. Signal propagation occurs from input to output layers, passing through 
the hidden layers of the FNN. Hidden neurons represent the input characteristics, while 
output neurons generate the neural network responses (Haykin, 1999). 

 
Fig. 3. Feed forward neural network configuration with two hidden layers 

The design of a MLP model consists by three main steps: i) configuration – how layers are 
organized and connected; ii) supervised learning – how information is stored in neural 
network; iii) generalization test – how neural network produces reasonable outputs for 
inputs not found in the training set (Haykin, 1999). In this work, we use feed forward neural 
networks and supervised learning to develop MLP neural network models. 

In the computational simulation of supervised error-correcting learning, a training 
algorithm is used for the adaptation of neural network synaptic weights. The instantaneous 
error ( n )e , as defined in (3), represents the difference between the desired response ( n )d , 
and the neural network output ( )ny , at the n-th iteration, corresponding to the presentation 
of the n-th training example, ( )( n ); ( n )x d . Training examples variables are normalized to 
present unitary maximum absolute value. So, when using a given MLP model, prior scaling 
and de-scaling operations may be performed into input and output signals of MLP neural 
network, according to (4) and (5), respectively. 

 ( ) ( ) ( )n n n= −e y d  (3) 

 max/=x x x  (4) 

 max= ⋅y y y  (5) 
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Supervised learning has as objective the minimization of the sum squared error SSE(t), given 
in (6), where the index t, represents the number of  training epochs (one complete 
presentation of all training examples, 1,2, ,n N=  , where N is the total number of 
examples, is called an epoch).  

 2

1 1

1 1( ) ( )
2

NjN

j
j n j

SSE t e n
N N = =

=
⋅   (6) 

Currently, there are several algorithms for the training of MLP neural networks. The most 
popular training algorithms are those derived from back-propagation algorithm (Rumelhart, 
Hinton, & Williams, 1986, as cited in Haykin, 1999). Among the family of back-propagation 
algorithms, the RPROP algorithm shows to be very efficient in solving complex modeling 
learning tasks.  

After neural network training, we hope that MLP weights will storage the representative 
information contained on training dataset. The trained neural network is tested in order to 
verify its capability of generalizing to new values that do not belong to the training dataset. 
Therefore, the MLP neural network operates like a “black box” model inside a given region 
of interest, which was previously defined when the training dataset was generated. 

2.2 Bio-inspired optimization algorithms 

Bio-inspired algorithms, which are stochastic population-based global search methods 
inspired by nature, such as simulated annealing (SA), genetic algorithm and particle swarm 
optimization are effective for optimization problems with a large number of design 
variables and inexpensive fitness function evaluation (Haupt, 1995; Haupt & Werner, 2007; 
Kennedy & Eberhart, 1995). However, the main computational drawback for optimization of 
microwave devices relies on the repetitive evaluation of numerically expensive fitness 
functions. Finding a way to shorten the optimization cycle is highly desirable (Silva et al., 
2010b). For instance, several GA schemes are available in order to improve its performance, 
such as: the use of fast full-wave methods, micro-genetic algorithm, which aims to reduce 
the population size, and parallel GA using parallel computation (R. L. Haupt & Sue, 2004).  

Bio-inspired algorithms start with an initial population of candidate individuals for the 
optimal solution. Assuming an optimization problem with Nvar input variables and Npop 
individuals, the population at the i-th iteration is represented as a matrix P(i)Npop×Nvar of 
floating-point elements, denoted by ,

i
m np , with each row corresponding to an individual. 

Under GA and PSO jargons, the individuals are named chromosomes and particles (or agents), 
respectively.  

2.2.1 Continuous genetic algorithm 

Continuous genetic algorithm is very similar to the binary-GA but works with floating-point 
variables. Continuous-GA chromosomes are defined in (7) as a vector with Nvar floating-
point optimization variables. Each chromosome is evaluated by means of its associated cost, 
which is computed through the cost function E given in (8).  
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 ,1 ,2 , var(i, ) , , , , 1,2, ,i i i
m m m Nchromosome m p p p m Npop = =    (7) 

 ( )cos (i, ) (i, )t m chromosome m= E  (8) 

Based on the cost associated to each chromosome, the population evolves through 
generations with the application of genetic operators, such as: selection, crossover and 
mutation. Flow chart shown in Fig. 4(a) gives an overview of continuous-GA.  

Mating step includes roulette wheel selection presented in (Haupt & Werner, 2007; R. L. 
Haupt & Sue, 2004). Population selection is performed after the Npop chromosomes are 
ranked from lowest to highest costs. Then, the Nkeep most-fit chromosomes are selected to 
form the mating pool and the rest are discarded to make room for the new offspring. 
Mothers and fathers pair in a random fashion through the blending crossover method (R. L. 
Haupt & Sue, 2004). Each pair produces two offspring that contain traits from each parent. 
In addition, the parents survive to be part of the next generation. After mating, a fraction of 
chromosomes in the population will suffer mutation. Then, the chromosome variable 
selected for real-value mutation is added to a normally distributed random number. 

Most users of continuous-GA add a normally distributed random number to the variable 
selected for mutation with a constant standard deviation (R. L. Haupt & Sue, 2004). In 
particular, we propose a new real-value mutation operator for continuous-GA as given in 
(9), where pmax and pmin are constant values defined according to the limits of the region of 
interest composed by input parameters. Function randn() returns a normal distribution with 
mean equal to zero and standard deviation equal to one.  

This mutation operator was inspired by simulating annealing cooling schedules (R. L. 
Haupt & Sue, 2004). It is used to improve continuous-GA convergence at the neighbourhood 
of global minimum. The quotient function Q given in (10) is crescent when the number of 
iterations increases and the global cost decreases. Thus, similar to the decrease of 
temperature in a simulating annealing algorithm, the standard deviation is decreased when 
the number of continuous-GA iterations is increased. The parameter A is a constant value 
and B is a value of cost function neighbour to the global minimum. The continuous-GA 
using the real-value mutation definition given in (9) and (10) is denominated improved 
genetic algorithm. 

 ( )
( )

max min1
, , ()

, cos ( )
i i
m n m n

p p
p p randn

Q i global t i
+ −

= + ⋅  (9) 

 ( ) ( ) 2

, cos ( )
, cos ( )

log cos ( ) , cos ( )

A global t i B
Q i global t i

A i global t i global t i B

≥= 
 + ⋅ <  

 (10) 

2.2.2 Particle swarm optimization 

Particle swarm optimization was first formulated in 1995 (Kennedy & Eberhart, 1995). The 
thought process behind the algorithm was inspired by social behavior of animals, such as 
bird flocking or fish schooling. PSO is similar to continuous-GA since it begins with a 
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random initial population. Unlike GA, PSO has no evolution operators such as crossover 
and mutation. Each particle moves around the cost surface with an individual velocity. The 
implemented PSO algorithm updates the velocities and positions of the particles based on 
the local and global best solutions, according to (11) and (12), respectively. 

 ( ) ( )( ) ( )1
, 0 , 1 1 , , 2 2 , ,

local bes i globalbest ii i i i
m n m n m n m n m n m nv C r v r p p r p p+  = + Γ ⋅ ⋅ − + Γ ⋅ ⋅ −  

 (11) 

 1 1
, , ,

i i i
m n m n m np p v+ += +  (12) 

Here, ,m nv  is the particle velocity; ,m np  is the particle variables; 0r , 1r  and 2r  are 
independent uniform random numbers; 1Γ  is the cognitive parameter and 2Γ  is the social 

parameter; ( )
,

local best i
m np  is the best local solution and ( )

,
globalbest i
m np  is the best global solution; C is 

the constriction parameter (Kennedy & Eberhart, 1995).  If the best local solution has a cost 
less than the cost of the current global solution, then the best local solution replaces the best 
global solution. PSO is a very simple bio-inspired algorithm, easy to implement and with 
few parameters to adjust. Flow chart shown in Fig. 4(b) gives an overview of PSO algorithm.  

 
Fig. 4. Flow charts of (a) continuous-GA and (b) PSO algorithm. 

3. FSS design considerations  

Frequency selective surfaces (FSSs) are used in many commercial and military applications. 
Usually, conducting patches and isotropic dielectric layers are used to build these FSS 
structures. FSS frequency response is entirely determined by the geometry of the structure 
in one period called a unit cell. In this section is presented some considerations about the 
design of FSS with fractal elements for operation at the X-band (8–12 GHz) and Ku-band 
(12–18 GHz). FSS fabrication and measurement procedures are summarized. 
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3.1 Design of FSS using fractal geometries   

FSS with fractal elements has attracted the attention of microwave engineering researchers 
because of its particular/special features. The design of a FSS with pre-fractal elements is a 
very competitive solution that enables the fabrication of compact spatial filters, with better 
performances when compared to conventional structures (Oliveira, et al., 2009; Campos et 
al., 2010). Several fractal iterations can be used to design a FSS with multiband frequency 
response associated to the self-similarity contained in the structure. Various self-similar 
fractals elements (e.g., Koch, Sierpinski, Minkowski, Dürer’s pentagon) were previously 
used to design multiband FSSs (Gianvittorio et al., 2003; Cruz et al., 2009; Trindade et al., 
2011).  

Fig. 5 illustrates the considered periodic array in this chapter. The periodicity of the 
elements is given by tx=Wc, in the x axis, and ty=Lc, in the y axis, where Wc is the width and 
Lc is the length of the unit cell element; in addition, W is the width and L is the length of the 
patch. The design of fractal patch elements depend of desired FSS filter specifications, such 
as: bandstop attenuation, resonant frequency, quality factor, fabrication restrictions, etc. 

 
Fig. 5. Periodic array of fractal patch elements 

3.1.1 Koch island fractal  

The Koch island fractal patch elements were obtained assuming a rectangular construction, 
fractal iteration-number (or level), k=0,1,2, and a variable fractal iteration-factor 1 /r a= , 
where a belongs to interval 3.05 10.0a≤ ≤ .  The geometry of the Koch island fractal patch 
elements is shown in Fig. 6, considering for k=0,1,2, and a=4. The rectangular patch element 
(fractal initiator) dimensions are (mm): W=4.93, L= 8.22, tx=8.22, and ty=12.32. 
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Fig. 6. Koch Island fractal patch elements (a=4)  

The Koch curve begins as a straight line corresponding to each side of the conventional 
rectangle. Next, the Koch element in the first fractal iteration is obtained by removing four 
scaled rectangles (with the width and length of the initiator rectangle scaled by the fractal 
iteration-factor) that lies at the center of each side of the initiator rectangle. The same 
construction is applied for others Koch iterations (see Fig. 6). After the k-th fractal iteration, 
the dimensions of scaled rectangles are given in (13) through the substitution of the dummy 
variable k  by the width Wk or length Lk of the k-th scaled rectangle. 

 ( )

1

2 1

, 1
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2
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k
k k
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−

− −

 ==  − =




 


 (13) 

3.1.2 Dürer’s pentagon fractal 

The Dürer’s pentagon fractal geometry was generated with the application of iterated 
function system (Trindade et al., 2011). From a regular pentagon patch element (L=10 mm 
and tx=ty=16.5 mm), that corresponds to the fractal initiator element, we use a fractal 
iteration-factor 0.382r = for the generation of Dürer’s pentagon elements at levels k=1,2, and 
3, where k

kL L r= ⋅ . Therefore, six small-scale copies of the initiator element are generated in 
a given fractal iteration, N = 6, resulting in a fractal dimension log( ) /log(1 / )D N r= , where 
D=1.8619. The geometry of the Dürer’s pentagon fractal is shown in Fig. 7.  

 
Fig. 7. Dürer’s pentagon fractal patch elements  
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3.1.3 Sierpinski island fractal 

The Sierpinski island fractal patch elements were designed based on Sierpinski curve fractal 
geometry. From an regular octagon patch element (L=3.6 mm and tx=ty=16.0 mm), that 
corresponds to the fractal initiator element, we used a fractal iteration-factor 1 / 2r = , and a 
number of five small-scale copies 5N = , resulting in a fractal dimension 

log( ) /log(1 / )D N r= , where D=2.3219. The geometry of the Sierpinski island fractal patch 
elements is shown in Fig. 8.  

 
Fig. 8. Sierpinski Island fractal patch elements 

3.2 Fabrication and measurement of frequency selective surfaces  

The frequency selective surfaces using fractal geometries were built as periodic arrays of 
patch fractal elements. FSS is mounted on a dielectric isotropic layer. FSS spatial filter 
prototypes were fabricated using conventional planar circuit technology, with low-cost 
fiberglass (FR-4) substrate with 1.5 mm of height and a relative permittivity of 4.4.  

The setup to measure the FSS transmission coefficients included: two horn antennas, two 
waveguides (cut-off frequency, 6.8 GHz), a network analyzer (model N5230A, Agilent 
Technologies), which operates from 300 KHz up to 13.5 GHz, beyond coaxial/waveguide 
transitions, handles and connectors. A fixed distance was adopted between the horn 
antennas in order to guarantee the operation in the far field region. The FSS filter 
prototypes were placed between the horn antennas for the measurement procedure (see 
Fig. 9).  

4. Optimal design of fractal frequency selective surfaces  

In this section are presented some applications of proposed optimization technique for 
optimal design of bandstop FSS spatial filters. Three optimization examples are 
described considering the use of FSS fractal patch elements: Koch island, Dürer’s 
pentagon, and Sierpinski island. The EM characterization of these FSSs was 
accomplished by means of a full-wave parametric analysis through the use Ansoft 
DesignerTM commercial software. 

MLP neural network models for these FSSs were developed using the conventional EM-
ANN neuromodeling technique (Zhang & Gupta, 2000). The supervised training of MLP 
weights was done through the well-established resilient back-propagation (RPROP) 
algorithm with standard training parameters (Ridmiller & Braun, 1993). 
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Fig. 9. Photograph of the Sierpinski FSS prototype and the measurement setup 

4.1 FSS with Koch island fractal patch elements 

In order to control the FSS resonant frequency and bandwidth, the shape of Koch island 
fractal patch elements is adjusted by fractal parameters: iteration-factor and iteration-
number. The input design variables (k, a, εr) are limited to design region of interest defined 
by the following discrete values selected for MoM full-wave parametric analysis: 

• Fractal iteration-number (or level): k=[1, 2] 
• Fractal iteration-factor: 1 /r a=  ,  a=[3, 4, 5, 6, 7, 9] 
• Relative permittivity: εr=[2.2, 3.0, 4.0, 4.8, 6.15, 7.0] 
• Dielectric layer thickness: h=1.5 mm 
• Scaling factors for training dataset: max [1, 9, 7]=x  and  max [19 05, 4.58].  =y  

Considering for design input variables (k, a, εr), a MLP model was trained to approach the 
resonant frequency fr(k, a, εr) and bandwidth BW(k, a, εr)  of the FSS spatial filters. The 
minimal MLP configuration able to solve the FSS modeling problem was defined with four 
input units, five hidden units, and two output units. The MLP configuration is illustrated in 
Fig. 10. The minimum number of five hidden neurons was found by means of a trial and 
error procedure and training restarts (Cruz et al., 2009). 

Using sigmoid activation function, the outputs of MLP model are computed by (14). 

 
( )
11,

1 exp
 

= ⋅ − + − ⋅  
y V

W x
 (14) 
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Where W and V are the MLP weight matrix, x=[-1, k-1, a, εr]T  and y=[fr, BW]T are the MLP 
input and output vectors, respectively. The resultant MLP trained weight values are given 
by (15) and (16). 

 

3.4476 0.4761 9.3218 0.1876
1.0630 0.3178 0.4056 2.0478
5.6533 5.2681 2.0179 1.9425
0.9611 4.0685 3.1393 0.1349
5.0429 12.4751 13.4767 1.5855

− 
 − − 
 =
 

− − 
 − 

W  (15) 

 
0.0572 0.1656 2.1679 0.1640 0.0936 0.2227

0.1059 0.2534 0.7188 0.2979 0.4961 0.2441
− 

=  
 

V  (16) 

 
Fig. 10. Multilayer perceptron configuration 

The MLP model for FSS filter design is CPU inexpensive, easy to implement and accurate. In 
addition, it requires small size EM dataset to learning the model of input/output mapping. 
The MLP model is used for evaluation of cost function in the bio-inspired optimization 
algorithm for FSSs with Koch island fractal patch elements. 

The FSS set of design variables [k, f, BW] composed the input data for bio-Inspired 
optimization algorithms and are chosen by the user, within the region of interest of MLP 
model: (k=1,2), (2,7<fr<19) GHz, and (1.5<BW<4.5) GHz. Given a FSS filter desired 
specification (f, BW), the goal of bio-inspired optimization is to find an optimal solution (εr, 
a) for a given fractal level k that minimizes the quadratic cost function as defined in (17). 

 
( ) ( )2 2

2 2( , )
i i
m mf fr BW BW

i m
f BW

   − −   = +
p p

E  (17) 
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The individuals [ , ]i i i T
m rm maε=p  evolve from the initial population given according to (18). 

The center of initial population 0 0( , )rm maε  in the searching space was chosen equal to (3.0, 
8.5). When the population evolves, each individual is constrained to the region of interest 
using (19). The dummy variable ξ  can be replaced by variables rε  or a . 

 0 0 0[ () / 5 () / 5 ]m rm mrandn randn aε= + +p  (18) 

 ( )( )min maxmin max , ,k k
m mξ ξ ξ ξ=  (19) 

In this first FSS optimization example, we intended to verify the execution of continuous-
GA and improved-GA algorithms. The algorithms start with the same initial population 
with 25 individuals distributed according to (18) and subject to restriction given in (19). We 
use the following FSS design specification: k=2, f=10.0 GHz, and BW=2.10 GHz.  

Assuming the GA parameters: crossover probability=0.6, mutation rate=0.2, A=30, B=10-9, 
Nvar=2, and Npop=25, we simulated up to 600 iterations. In Fig. 11(a) is presented the initial, 
intermediate, and final populations, as well as, the continuous-GA path plotted over the cost 
surface contours.  Fig. 11(b) shows the same results for the improved-GA.  

   The observed zigzag paths at flat regions of the cost surface contribute to slow down the 
convergence of genetic algorithms. The final population of the continuous-GA algorithm 
oscillates around the global minimum of cost function (see Fig. 11(a)), while the improved-
GA final population is closely to the global minimum (see Fig. 11(b)). 

Fig. 12(a) shows the global cost evolution for the best individual of continuous-GA and 
improved-GA populations. It is observed that improved-GA converges closely to global 
minimum. The final global cost values for improved-GA and continuous-GA 
were 102.91 10−× , and 131.26 10−× , respectively. The optimized values of design parameters, 

5a =  and 4.4rε = , were obtained (see final population in Fig. 11(b)).  

To verify the optimization results, a FSS prototype with Koch island fractal patch 
elements was built and bandstop properties of this spatial filter were measured. In Fig. 
12(b) is presented the simulated and measured FSS transmission. The obtained numeric 
results are presented in Table 1, and are in excellent agreement with desired FSS design 
specifications.  
 

 Ansoft DesignerTM Measured 

a εr fr (GHz) BW (GHz) fr (GHz) BW (GHz)

5 4.4 9.97 2.10 10.00 1.73 

Table 1. Simulated and measured results of optimized FSS 
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(a) 
 

 
 

(b) 
 

Fig. 11. Initial, intermediate, and final populations and GA paths plotted over the cost 
surface contours: (a) continuous-GA and (b) improved-GA. 
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             (a)              (b) 

Fig. 12. (a) Evolution of global cost for continuous-GA and improved-GA. (b) Comparison 
between the simulated and measured FSS transmission (k=2, εr=4.4, and a =5) 

4.2 FSS with Dürer’s pentagon patch elements 

The Dürer’s pentagon geometry was used to design a FSS consisting of a periodic array of 
fractal patch elements. The input design variables (k, tanδ , tx, εr) are limited to design region 
of interest defined by the following discrete values selected for parametric analysis: 

• Fractal iteration-number (or level): k=[0, 1, 2, 3] 
• Patch element periodicity: tx=ty= [16.5, 17, 18, 19, 20, 21, 22, 23, 24, 25] mm 
• Relative permittivity: εr=[2.33, 3.5, 4.4, 6.15, 10.2] 
• Loss tangent: tanδ = [0.0014, 0.012, 0.02, 0.0025, 0.0035]  
• Dielectric layer thickness: h=1.5 mm 

Considering for design input variables (k, tanδ , tx, εr), a MLP model was trained to 
approach the resonant frequency and bandwidth of the bandstop FSS spatial filters. The 
minimal MLP configuration able to solve the FSS modeling problem was defined with five 
input units, ten hidden units, and two output units.  

The MLP model outputs are shown in Fig. 13(a) and 13(b), considering the limits of the 
desired region of interest of the design input variables. The MLP model is able to interpolate 
the training examples corresponding to εr=[2.33, 3.5, 6.15, 10.2] and presents generalization 
ability for new inputs within the region of interest, εr=4.4. Thus, the MLP model learns the 
EM behavior of FSS filters becoming available this EM knowledge for future utilization.  

In this second FSS optimization example, we verify the performance of continuous-GA and 
PSO. The algorithms start with the same initial population with Npop=25 individuals 

[ , ]i i i T
m rm xmtε=p distributed according to (18) with 0 0( , )rm xmtε = (9.0, 24).  

The FSS set of design variables [k, f, BW] composed the input data for bio-Inspired 
optimization algorithms and are chosen by the user, within the region of interest of MLP 
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model: (k=0,1,2,3), (4.9<fr<13.9) GHz, and (0.6<BW<4.6) GHz. In this example, we use the 
following FSS design specification: k=1, f=8.2 GHz and BW=2.78 GHz.  

 
       (a)                 (b) 

Fig. 13. (a) FSS resonant frequency as a function of periodicity and relative permittivity. (b) 
FSS bandwidth as a function of periodicity and fractal iteration-number 

Assuming the genetic algorithm parameters: crossover probability=0.6, mutation rate=0.2, 
A=30, B=10-9, Nvar=2 and Npop=25, we simulated up to 250 GA-iterations. Fig. 14(a) shows 
the initial, intermediate and final populations, and the continuous-GA path plotted over the 
cost surface contours. The optimal solution was: εr=4.4 and tx=ty=16.5 mm.  
 

 
(a) 
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(b) 

Fig. 14. Initial, intermediate, and final populations and bio-inspired algorithm paths plotted 
over the cost surface contours: (a) continuous-GA and (b) PSO. 

The PSO algorithm with parameters 1 2 2Γ = Γ = , 1.3C =  and the same initial population was 
used for FSS optimization. Fig. 14(b) shows the PSO path plotted over the cost surface 
contours. In this simulation, the PSO algorithm converges to the global minimum of cost 
function after 96 iterations. In this case, the optimal solution was: εr=4.4 and tx=ty=16.5 mm.  

 
Fig. 15. (a) Evolution of global cost for continuous-GA and PSO. (b) Comparison between 
the simulated and measured FSS transmission (k=1, εr=4.4, and tx=ty=16.5 mm). 

Fig. 15(a) shows the evolution of the average global cost for continuous-GA and PSO 
populations. We observe that the PSO algorithm is limited in precision to the round off error 
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of the computer (≈10-31). In Fig. 15(b) is presented a comparison between the simulated and 
measured results for the transmission coefficient (dB) of the optimized FSS with Koch fractal 
patch elements. The simulated and measured results are in excellent agreement with desired 
FSS design specifications. 

4.3 FSS with Sierpinski iIsland fractal patch elements 

The Sierpinski island fractal geometry was used to design a FSS consisting of a periodic 
array of fractal patch elements. The input design variables (k, tx, εr) are limited to design 
region of interest defined by the following discrete values selected for parametric analysis: 

• Fractal iteration-number (or level): k=[1, 2, 3] 
• Patch element periodicity: tx=ty=[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] mm 
• Relative permittivity: εr=[2.2, 2.94, 4.4, 6.15, 10.2] 
• Dielectric layer thickness: h=1.5 mm 

Considering for design input variables (k, εr, tx), a MLP model was trained to approach the 
resonant frequency and bandwidth of the FSS filters with Sierpinski island fractal patch 
elements. Fig. 16 shows the variation of sum squared error given in (6) as a function of the 
number of MLP hidden units. The minimal MLP configuration able to solve the FSS modeling 
problem was defined with four input units, fifteen hidden units, and two output units.  

 
Fig. 16. Variation of SSE as a function of MLP hidden units  

The MLP model outputs are shown in Fig. 17(a) and 17(b). Considering the limits of the 
desired region of interest of the input design variables, the MLP model is able to interpolate 
the training dataset.  

In this third FSS optimization example, we intended to verify the execution of continuous-
GA, improved-GA, and PSO. The algorithms start with the same initial population with 
Npop=100 individuals [ , ]i i i T

m rm xmtε=p distributed according to (18), with 0 0( , )rm xmtε = (8.5, 22) 
and subject to restriction given in (19).  
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Fig. 17. (a) FSS resonant frequency as a function of periodicity and relative permittivity. (b) 
FSS bandwidth as a function of periodicity and fractal levels 

The FSS design variables [k, f, BW] composed the input data for bio-Inspired optimization 
algorithms and are chosen by the user within the region of interest of MLP model: (k=1,2,3), 
(3.1<fr<10.5) GHz, and (0.15<BW<1.7) GHz. We used the following input data for 
simulation of bio-inspired optimization: k=1, f=8.37 GHz and BW=1.44 GHz.  

 
Fig. 18. Bio-inspired algorithm paths plotted over the cost surface contours, initial, 
intermediate, and final populations  

In Fig. 18 is presented the initial, intermediate, and final populations, as well as, the bio-
inspired algorithm paths plotted over the cost surface contours. In this case, the optimal 
solution founded was: εr=4.4 and tx=ty=16.0 mm.  
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Fig. 19(a) shows the evolution of the global cost for bio-inspired algorithms. PSO algorithm 
converges to the global minimum of cost function after 93 iterations. Improved-GA and 
continuous-GA converge after 185 and 211 iterations, respectively. In this example, 
implemented bio-inspired algorithms are limited in precision to the round off error of the 
computer (≈10-31). In Fig. 19(b) is presented a comparison between the CPU requirement as a 
function of bio-inspired algorithm iterations. From this result, was observed that the CPU 
spent-time of bio-inspired optimization is determined by MLP model CPU requirement.  

 
 (a) 

 
(b) 

Fig. 19. (a) Evolution of global cost for implemented bio-inspired algorithms. (b) CPU 
requirement as a function of bio-inspired algorithm iterations (Npop=100) 
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Fig. 20(a) shows a photograph of the fabricated FSS prototype with Sierpinski island fractal 
patch elements considering the optimal design parameters: k=1, εr=4.4, and tx=ty=16.0 mm. 
In Fig. 20(b) is presented a comparison between the simulated and measured results for the 
transmission coefficient (dB) of the optimized FSS. The simulated and measured results are 
in good agreement with desired FSS design specifications (f=8.37 GHz and BW=1.44 GHz). 

 
(a) 

 
(b) 

Fig. 20. (a) Built FSS prototype with Sierpinski island fractal patch elements (k=1, εr=4.4, and 
tx=ty=16.0 mm). (b) Comparison between the simulated and measured FSS transmission  
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5. Conclusion 

This chapter described a new EM optimization technique blending full-wave method of 
moments, MLP artificial neural networks and bio-inspired algorithms for optimal design of 
frequency selective surfaces with fractal patch elements. Three fractal geometries were 
considered: Koch island, Dürer’s pentagon and Sierpinski island. The use of fractal 
geometries to design FSS on isotropic dielectric substrates becomes possible the control of its 
frequency responses without increase its overall size.  The MLP models were trained with 
accurate EM data provided by FSS simulations based on the method of moments. The 
computation of cost function of bio-inspired algorithms was done throught the use of 
developed MLP models. This procedure results in fast and accurate bio-inspired 
optimization algorithms. According to the obtained results, genetic algorithms present 
zigzag paths at flat regions of the cost surface that contribute to slow down the algorithm 
convergence. The introdution of a new mutation operation avoid the oscilation of 
continuous-GA final population around the global minimum of cost function. The 
improved-GA final population closely to the global minimum improves the GA 
convergence. PSO algorithm showed to be faster and easier to implement. This makes the 
optimization through PSO a powerful tool in synthesizing FSS structures. The idea of 
blending bio-inspired algorithms and artificial neural networks to optimize frequency 
selective surfaces shows to be very interesting, due to its great flexibility and easy 
application to structures that do not have a direct fitness function. The MoM-ANN-GA/PSO 
proposed technique is accurate and CPU inexpensive, which are most desired characteristics 
in the development of computer-aided design tools for EM optimization. 
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1. Introduction 

The versatility that genetic algorithm (GA) has proved to have for solving different 
problems, has make it the first choice of researchers to deal with new challenges. Currently, 
GAs are the most well known evolutionary algorithms, because their intuitive principle of 
operation and their relatively simple implementation; besides they have the ability to reflect 
the philosophy of evolutionary computation in an easy and quick way.  

As time goes by, human beings are more sophisticated. Every time we demand better 
performance of the equipment and techniques in the solution of more complex problems; 
forcing problem-solvers to use non-exhaustive solution techniques, although this could 
means the loss of accuracy. Non conventional techniques provide a solution in a suitable 
time when other techniques can be extraordinarily slow. Evolutionary algorithms are  
metaheuristics inspired on Darwin's theory of the survival of the fittest. A feature shared by 
these algorithms is that they are population-based, so each population represents a group of 
possible solutions to the problem posed; and only will transcend to the next generation 
those individuals with the best performance. At the end of the evolutionary process, the 
population is formed by the better individuals only. In general, all metaheuristics have 
shown their efficiency in solving complex optimization problems with one goal, so having 
to work simultaneously with more than one target, and therefore having to determine not 
only one answer but a set of them; population-based metaheuristics like evolutionary 
algorithms seem to be the most natural technique to address this type of optimization.  

This chapter presents the theoretical description of the multi-objective optimization problem 
and establishes some important concepts. Later the most well known algorithms that 
initially were used for solving this problem are presented. Among these algorithms excels 
the GA and some modifications to it. The chapter also briefly discusses the estimation of the 
distribution algorithm (EDA), which was also inspired on the GA. Subsequently, the 
drawing graphs problem is established and solved. This problem, like many other of real life 
is inherently multi-objective. The proposed solution to this problem uses a hybrid EDA 
combined with a hill-climbing algorithm, which handled three simultaneous objectives: 
minimizing the number of crossing edges in the graph (total number of crossing edges of the 
graph have to be minimized), minimizing the graph area (total space used by the graph 
have to be as small as possible) and minimizing the graph aspect ratio (the graph have to be 
in a perfect square Visualized area). This section includes the description of the used 
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approach and a group of experimental results, as well as some conclusions and future work. 
Finally, the last section of this chapter is a brief reflection on the future of multi-objective 
optimization research. On it, we capture some concerns and issues that are relevant to the 
development of this area.  

2. Multi-objective optimization 

Optimization in both mathematics and computing, refers to the determination of one or 
more feasible solutions that corresponds to an extreme value (maximum or minimum), 
according to one or more objective functions. To find the extreme solutions of one or more 
objective functions can be applied in a wide range of practical situations, such as to 
minimize the manufacturing cost of a product, to maximize profit, to reduce uncertainty, 
and so on. The principles and methods of optimization are used in solving quantitative 
problems in disciplines such as physics, biology, engineering, economics, and others. The 
simplest optimization problems involve functions of a single variable and can be solved by 
differential calculus. When researchers work with optimization, we could find two main 
types: mono-objective optimization and multi-objective optimization (MOO), depending on 
the number of optimization functions. The optimization can be subject to one or several 
constraints. The constraints are conditions that limit the selection of the values variables can 
take. This area has been approached for different techniques and methods. 

Probably, the main difficulty of modelling mono-objective problems consists on obtaining 
just one equation for the complete problem. This stage could be too complicated to reach 
(Collette & Siarry, 2002). Due to the difficulty of finding an equation for a problem where 
many factors can influence, multi-objective optimization gives a very important advantage. 
Nevertheless, multi-objective optimization let us use some equations for reaching more than 
one objective; this property adds complexity to the model. As complexity of problems is 
increased, it is necessary to use new tools; for example: lineal programming that was created 
to solve optimization problems that involve two or more entrance variables.   

2.1 Global optimization 

Global optimization is the process of finding the global maximum or minimum (it will 
depend on the problem to be solved), inside a space ܵ. Formally, it could be defined as 
(Bäck, 1996): 

Definition 1. Given a function	݂(	xሬԦ	) ∶ 	Ω	 ⊆ 	ܵ	 = 	ℝ୬ → 	ℝ, Ω	 ≠ 	∅, for  xሬԦ 	 ∈ 	Ω the value ݂∗ ≜ ݂(	xሬԦ∗) 	> 	−∞ is named the global minimum if and only if 

 ∀	xሬԦ 	 ∈ 	Ω ∶ 	݂(	xሬԦ∗) 	≤ 	݂(	xሬԦ	) (1) 

This way,  xሬԦ is the global minimum, f (ݔԦ∗) is the objective function and the set Ω is the feasible 
region inside the set ܵ. The problem of determining the global minimum is called “problem of 
global optimization”. When the problem to optimize is mono-objective, the solution is unique. 
But this is not the case of multi-objective optimization problems (MOOP), they usually give 
a group of solutions that satisfy all objectives presented in vectors. Then, the decision maker 
(the human with this work) selects one or more of that vectors which represent acceptable 
solutions of the problem according to their own point of view (Coello et al., 2002). 
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2.2 General multi-objective optimization problem  

MOOP also called multi-criteria optimization, multi-performance or vector optimization 
problem, can be defined (in words) as the problem of finding  a vector of decision variables 
which satisfies constraints and optimizes a vector function whose elements represent the 
objective functions (Osyczka, 1985). These functions form a mathematical description of 
performance criteria which are usually in conflict with each other. Hence, the term 
“optimize” means finding such a solution which would give the values of all the objective 
functions acceptable to the decision maker (Coello, 2001). 

2.2.1 Decision variables 

Decision variables are numeric values, which should be selected in a problem of 
optimization. These variables are represented for ݔ where ݅ = 1,2, … , ݊. 
The vector of ݊ decision variables 	xሬԦ	 is represented by:  

 	xሬԦ = 	 ൦ݔଵݔଶ⋮ݔ൪	 (2) 

2.2.2 Constraints 

Constraints imposed by the nature and environment of certain studied case, will be found in 
most of optimization problems. These conditions can be physical limitations, space or 
resistance obstacles, or restrictions in the time for the realization of a task, among others. So, 
certain solution is considered acceptable, if at least it satisfies these constraints. The 
constraints represent dependences between the parameters and the decision variables in the 
optimization problem. We can identify two different types of constraints; constraints of 
inequality: 

 g୧(xሬԦ) ≤ 0							i = 1,2, … ,m (3) 

and the equality constraints:  

 h୧(xሬԦ) = 0						i = 1,2, … , p (4) 

It is necessary to highlight that p should be smaller than n, because the number of equality 
constraints should be smaller than the number of decision variables, since if  ≥ ݊ the 
problem is known as over constrained (Ramírez, 2007), and this means that will have more 
unknown variables than equations. Those constraints can be explicit (described by one 
algebraic expression), or implicit (in which case, an algorithm or method have to exist to 
calculate this constraints for any vector ݒԦ). 
2.2.3 Objective functions 

To know how good a solution is, it is necessary to have a criterion to evaluate it. This 
measure should be expressed as an algebraic function of the decision variables and it is 
known as objective function. It is possible that researches do not have this mathematical 
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model, so, at least it is needed to have some mechanisms to determine the quality of the 
solutions, which can vary depending on the problem. 

In many problems of the real world, objective functions are in conflict one to each other and 
even in the same problem some of them can be functions to minimize while the remaining 
ones have to be maximized. The vector of objective functions Ԧ݂(	ݔԦ	)	is defined as follow: 

 Ԧ݂(ݔԦ) = 	 ێێێۏ
ۍ Ԧ݂ଵ(ݔԦ)Ԧ݂ଶ(ݔԦ)⋮Ԧ݂(ݔԦ)ۑۑے

 (5) 	ېۑ

The set where R denotes the real numbers by  ℝ୬ is called Euclidian space of n dimensions. 
For the multi-objective optimization problem are considered two Euclidian spaces: the one 
of the decisions variables and the one of the objective functions. Each point in the first space 
represents a solution and it can be mapped in the space of the objective functions and then 
the quality of each solution can be determined. The general MOOP can be formally defined 
as: 

Definition 2. Find the vector    xሬԦ∗ = [xଵ∗, xଶ∗, … , x୬∗ ] which will satisfy the m inequality 
constraints: 

 g୧(xሬԦ) ≤ 0						i = 1,2,… ,m (6) 

the p  equality constraints 

 h୧(xሬԦ) = 0						i = 1,2, … , p (7)    

and will optimize the vector function 

 fԦ(xሬԦ) = [fଵ(	xሬԦ	), fଶ(	xሬԦ	), … , f୩(	xሬԦ	)]	 (8) 

In other words, MOOP consists on determining the set of values for the decision variables xଵ∗, xଶ∗, … , x୬∗  which satisfy equations (6) and (7) and simultaneously optimize (8). Constraints 
given in (6) and (7) the feasible region of Ω and any point xሬԦ 	 ∈ 	Ω is a feasible solution. The 
vector of functions fԦ(xሬԦ)  map the group of feasible solutions Ω to the group of feasible 
objective functions. The k objective functions in the vector  fԦ(xሬԦ) represent the criterion that 
can be expressed in different units. The restrictions g୧(xሬԦ) and h୧(xሬԦ) represent constraints 
applied to the decision variables. The vector 	xሬԦ∗	represents the group of optimal solutions. 

2.3 Multi-objective optimization type of problems 

In the area of multi-objective problems, three variants could be found; the first of them 
consists on minimizing the whole set of objective functions, the second consists on 
maximizing them and the third one is a mixture of minimization and maximization of the 
objective functions.  

When we are in the third case, is very common that all the functions be transformed to their 
minimization version or maximization one, as it is preferred. So, the next equation can be 
used: 
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  max	( f୧(xሬԦ)) = 	−min( − f୧(xሬԦ)) (9) 

In the same way, inequality constraints (6) can be transformed multiplying by -1 and 
changing the sign of the inequality as follows: 

   −g୧(xሬԦ) ≥ 0						i = 1,2, … ,m (10) 

2.4 The ideal vector 

The ideal vector fԦ୧ is formed as  fԦ୧ = ൣfԦଵ, fԦଶ, ⋯ , fԦ୩൧, where f୧denotes the optimal for the 
i-th objective function. If the objectives were not in conflict, then would exist a unique point xሬԦ (in the space of the decision variables), but this situation is very exceptional in the real 
world. 

The most accepted notion of optimum in the multi-objective environment was formulated 
by Francis Ysidro Edgeworth in 1881 and generalized after by Vilfredo Pareto in 1896.  

2.5 Pareto – optimality 

The concept of Pareto Optimum (also called Efficiency of Pareto, in honour of his discoverer, 
Vilfredo Pareto), is a concept of the economy with application in that discipline and in social 
sciences and engineering.  

According to Pareto, a specific situation X is superior or preferable to other situation Y 
when the pass from Y to X supposes an improvement for all the members of the society, 
or an improvement for some, without the other ones be harmed. In other words, in 
economy and political economy, the concept of “Optimum of Pareto” simply indicates a 
situation in which cannot improve the situation of somebody without making worse the 
others’ situation.  

As already was said, the concept was born in economics, but its scope covers any situation 
with more than one objective to optimize. 

Pareto optimality 

We say that a vector of decision variables  xሬԦ∗ ∈ 	ܵ  is Pareto optimal if there is not another  xሬԦ ∈ 	ܵ  such that   f୧(xሬԦ) ≤ 	 f୧(xሬԦ∗)		for all i = 1, … . k	and  f୨(xሬԦ) < 	 f୨(xሬԦ∗)		 for at least one j. In other 
words, this definition establishes    xሬԦ∗  is Pareto optimal if there no exists a feasible vector of 
decision variables ݔԦ ∈ 	ܵ which would decrease some criterion without causing a 
simultaneous increase in at least one other criterion. Unfortunately, this concept almost 
always gives not a single solution, but rather a set of solutions called the Pareto optimal set. 
The vectors  xሬԦ∗  corresponding to the solutions included in the Pareto optimal set are called 
non-dominated ones. The plot of the objective functions whose non-dominated vectors are 
in the Pareto optimal set that is called the Pareto front (Coello, 2011). 

2.6 Pareto dominance 

Formally, it is said that a vector ݑ = 	 [uଵ, uଶ, … , u୩]	   dominates a vector ݒ = 	 [vଵ, vଶ, … , v୩] 
if and only if  ݑ is partially less than ݒ. In other words: 
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 ∀݅	 ∈ 	 ሼ1,2, … , ݇ሽ	, ݑ ≤ 	 ݒ 	∧ 	∃݅	 ∈ 	 ሼ1,2, … , ݇ሽ ∶ 	 ݑ <   (11)ݒ	

And it is denoted by:   ݑሬԦ	  .Ԧݒ
Considering a MOOP fԦ(xሬԦ), then	the	Pareto	optimal	set	P∗ is defined as: 

     ࣪∗ = 	 ൛ݔԦ 	∈ 	Ω	|			∃		ݕԦ 	 ∈ 		Ω		fԦ	(ݕԦ)	 				fԦ	(ݔԦ)	ൟ (12) 

2.7 Pareto front 

The Pareto Front concept is defined formally as follow: 

Considering a MOOP fԦ(xሬԦ) and a Pareto optimal set  ܲ∗; the Pareto Front  ࣪ℱ∗ is defined as 

 ࣪ℱ∗ = 	 ൛ Ԧ݂ = 	 [ ଵ݂(ݔԦ),			 ଶ݂(ݔԦ), … , ݂(ݔԦ)]்		|		ݔԦ 	 ∈ 	࣪∗ൟ (13) 

Figures 1, 2, 3 and 4 show some Pareto fronts for two objective functions (f1 and f2). In all 
mentioned figures, the front is the set of points marked with a line. Figure 1 for example, 
presents the case in which both objective functions are minimized.  

 
Fig. 1. Pareto front for the minimization of two objective functions (f1 and f2) 

 
Fig. 2. Pareto front for the minimization of f1 and the maximization of f2 

Figure 2 shows the Pareto front for the minimization of function f1 and the maximization of 
function f2. As the reader can see, the front is formed by the solutions that are bigger on f2 
but smaller on f1.   

In figure 3, it is presented the Pareto front for the maximization of the two objective 
functions. Here the solutions on the front are those with the biggest value on function f1 and 
the biggest value on f2 too. 

 
Fig. 3. Pareto front for the maximization of f1 and the maximization of f2 
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Fig. 4. Pareto front for the maximization of f1 and the minimization of f2 

Finally, figure 4 shows the shape of the Pareto front when f1 is maximized while f2 is 
minimized. In this figure it can be seen that the Pareto front is formed by solutions that 
exhibit a high fitness on f1 but low fitness on f2. 

Normally, it is impossible to find a mathematical expression that allows us to determine the 
whole set of points conforming the ࣪ℱ∗. To determine this group, usually are calculated the Ԧ݂ of an enough number of points in  Ω (feasible region). If the number of points calculated is 
appropriate, then can be determined which solutions are not dominated ones and this way 
the Pareto front can be obtained.  Not dominated solutions don't have any relationship to 
each other, on the fact they are members of the Pareto optimal. This set corresponds to the 
non dominated solutions that conform the Pareto front. 

According with the definition of Pareto optimal, to get the solutions, it is necessary to make 
a commitment among the functions, in other words, improving an objective will be reflected 
as the deterioration of another. This is one of the main concepts in multi-objective 
optimization.  The commitment is subjected to questions in some cases, maybe not in the 
totality of cases. But we could generate better results in terms of quality and smaller cost, 
only changing the formulation of the problem (Zeleny, 1997). 

2.8 Strong and weak Pareto dominance 

Besides the Pareto optimality concept, there are some other concepts very important in 
MOOP, two of them are called: weak Pareto dominance and strong Pareto dominance. A 
vector is a weak Pareto optimal if does not exist another vector in which all components in 
the objective functions space are better. Formally it can be defined as: A solution  xሬԦ∗ 	 ∈ 		Ω is 
a weakly not dominated solution if does not exist another solution  ݔԦ 	∈ 	Ω	|			f୧	(ݔԦ) < f୧	(ݔԦ∗), 
for ݅ = 1,2, … , ݇. 
The concept of strong Pareto dominance could be summarized as follows: A solution  xሬԦ∗ 	 ∈ 		Ω is a strongly not dominated solution if does not exist another solution ݔԦ 	∈	Ω	|			f୧	(ݔԦ) ≤ f୧	(ݔԦ∗), for ݅ = 1,2, … , ݇	and also exists at least a value  j	|	f୨	(ݔԦ) < f୨	(ݔԦ∗) 
3. Multi-objective evolutionary algorithms 

Although apparently the only source of motivation for using evolutionary algorithms to 
solve multi-objective problems arises from a single source (Goldberg 1989), this field has 
become very wide in recent years. As discussed in the introduction to this chapter, the 
parallel nature of evolutionary algorithms make them a tool with great potential when 
trying to find a group of solutions on an optimization problem.  
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This section will discuss the first multi-objective optimization algorithms (MOAs) used, 
passing from those that handle the problem as if it were a single objective problem, to those 
that make use of EDAs. EDAs are particularly important in this chapter, because towards 
the end of it, the problem of graph drawing is addresses by this type of metaheuristics.  

The field of both mono-objective and multi-objective optimization has been benefited from a 
significant number of classical techniques, but quantity of new techniques have been 
recently included. A particularly successful approach is the application of evolutionary 
computation. Because this chapter deals with the solution of multi-objective problems with 
heuristic tools, we will start describing the general operation of an evolutionary algorithm.  

An evolutionary algorithm begins with the creation (initialization) of a population of 
individuals (possible solutions to the problem) "Pt", usually created by a random procedure 
or knowledge-driven problem-information. Thereafter, the algorithm performs an iterative 
process that evaluates the quality of each individual in the population and starts a process of 
transformation of the current population by certain operators. The most common operators 
are selection, crossover, mutation and elitism. The iterative process stops when one or more 
predetermined criteria are met. Figure 5 shows the general procedure of an evolutionary 
algorithm. In this figure each apostrophe represents a new transformation of the current 
population, while “t” indicates the generation number. 

 
Fig. 5. General Evolutionary Optimization Procedure (Deb, 2008) 

 
Fig. 6. Classification of Multi-Objective Evolutionary Algorithms 

An Evolutionary Optimization Procedure

t=0;
Initialization (Pt);
do

Evaluation(Pt);
Pt’ = Selection (Pt);
Pt’’ = Variation (Pt’);
Pt+1 = Elitism (Pt, Pt’’);

while (Termination(Pt,Pt+1));
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Optimum
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Even though the evolutionary multi-objective optimization field is very young (less than 
twenty years), it is already considered as a well-established research and application area; 
according to Deb (Deb, 2008) there are hundreds of doctoral theses on this topic, and are 
dozens of books devoted to it too.  

Some of the reasons why evolutionary algorithms (EAs) have become so popular are: 

1. EAs do not require any derivative information 
2. EAs are relatively simple to implement 
3. EAs are flexible and have a wide-spread of applicability (Deb, 2008)  

Marler and Arora (Marler and Arora, 2004) propose a general classification of all multi-
objective optimization methods according to the decision maker (DM) intervention. These 
researchers distinguished the next categories: 

• Methods with a priori articulation of preferences 
• Methods with a posteriori articulation 
• Methods with no articulation of preferences.  

The first category focuses on those methods where the user (DM) can specify certain 
preferences since the beginning of the process; which may be articulated in terms of goals, 
levels of importance of the objective functions, etc. The second category refers to the group 
of methods that begin the search for the Pareto set without additional information, but as 
the search process progresses, the method has to be assisted by the introduction of some 
preferences provided by the DM. Finally, when the DM is not able to define specifically 
what he prefers, it is necessary to employ methods that do not require any articulation of 
preferences. These methods are those that make up the third category of Marler and Arora. 
For more details see (Marler and Arora, 2004).  

Speaking more specifically about multi-objective evolutionary algorithms (MOEAs), we can 
find another widely accepted classification. This classification groups them as follows:  

• Those algorithms that do not incorporate the concept of Pareto optimality in their 
selection mechanism. 

• Those algorithms that rely in the population according to whether an individual is 
dominated or not. 

Considering this last classification and the one used by Coello (Coello, 1999), main multi-
objective evolutionary algorithms can be grouped in the way shown in Figure 6. 

In this chapter we will use mainly the latter classification, because our interest is in those 
techniques that come from the evolutionary computation. Since explaining all the 
algorithms of the previous classification would be very extensive, we will focus on 
discussing only the most used of them. 

3.1 Approaches that use aggregative functions 

The most commonly used methods for solving multi-objective problems, also called “basic 
methods” (Miettinen, 2008) are those who handle problems as if they were single-objective 
problems. These methods consist on the transformation of the problem so that they can be 
solved by optimizing a single objective function. The tendency to transform a multi-
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objective problem to the form of a single-objective one, responds to the fact that single-
objective optimization techniques are better known than those that include optimization 
based on several functions. The intuitive nature of these techniques, besides the fact that 
GAs use scalar fitness, makes aggregative functions the first option for solving multi-
objective problems. Aggregative functions are combinations either linear or nonlinear of all 
objectives into a single one. Although there are some drawbacks in using arithmetic 
combinations of objectives, these techniques have been used extensively since the late 
sixties, when Rosenberg published his work (Rosenberg, 1967). Even though Rosenberg did 
not use a multi-objective technique, his work showed that it was feasible to use evolutionary 
search techniques to handle multi-objective problems. The two techniques that best 
represent this kind of approaches are: Weighted Sum Method and ε-Constraint Method.  

Readers interested on techniques in this group, can consult "A comprehensive Survey of 
Evolutionary-Based Multi-objective Techniques" (Coello, 1999). 

3.1.1 Weighted sum method 

The goal of this method is constituted by the sum of all objectives of the problem, using 
different coefficients for each one. The coefficients used represent the level of importance 
assigned to each of the objectives. So the optimization problem becomes a problem of scale 
optimization as follows: 

 minimize	∑ w୧f୧(xሬԦ)୩୧ୀଵ  (14) 

Where wi ≥ 0 is the weighting coefficient that represents the relative importance of the i-th 
objective.  It is usually assumed that 

 ∑ ݓ = 1ୀଵ  (15) 

The normalization above takes place because the results obtained by this technique may 
have significant variations to small changes in the coefficients and avoids that different 
magnitudes confuse the method. Very often it is need to perform a set of experiments before 
determining the best combination of weights. When the decision maker has some a priori 
knowledge about the problem, it is feasible and beneficial to introduce this information in 
modelling. At the end of the process is the decision maker the one who should make the 
most appropriate solution according to his experience and intuition. There are several 
variations of this method, for example, adding constant multipliers to scale objectives in a 
better way. This was the first method used for the generation of non inferior solutions for 
multi-objective optimization (Coello 1998), perhaps because it was implied by Kuhn and 
Tucker in their seminar work on numerical optimization (Kuhn and Tucker, 1951). 
Computationally speaking, this method is efficient and it has proven to have the ability of 
generating non-dominated solutions which are often used as a starting point for other 
techniques; nevertheless, its main drawback is the enormous complexity to determine the 
appropriate weights when there is no information about the problem. In the case that there 
is no information about the problem, the literature suggests using simple linear 
combinations of the objectives to adjust the weights iteratively. In general this technique is 
not suitable in the presence of search spaces non-convex (Ritzel et al., 1994), because the 
alteration of the weights can produce jumps between several vertex, leaving undetected 
intermediate solutions.  
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3.1.2 ε-constraint method 

The operating principle of this method is to optimize only one objective at a time, leaving 
the rest of them as constraints that must be limited by certain permitted levels εj. The 
objective that is optimized, is the one considered as the principal or most important f1. εj 
levels are then altered to generate the Pareto optimal entire set. This method can be 
formulated as follows: 

   minimize	 ݂(ݔԦ) (16) 

	ݐ	ݐ݆ܾܿ݁ݑݏ        ݂(ݔԦ) ≤ ݆	݈݈ܽ	ݎ݂	ߝ = 1,… , ݇, ݆ ≠ ݈ (17) 

where l∈ {1,….,k} and εj are upper bounds for the objectives (j≠ l). The search stops when the 
decision maker finds a satisfactory solution. This method was introduced by Haimes et al in 
(Haimes et al., 1971). It is possible that this procedure should be repeated for different 
values of the index l. In order to obtain a set of appropriate values of εj is very common to 
use independent GAs or other techniques for optimizing each objective function. The main 
weakness of this method is related to its huge consumption of time, however, its relative 
ease, has made it very popular especially in the community of GAs. 

3.2 Other approaches not based on the notion of Pareto optimum 

Although techniques mentioned in the previous sub-section have proven to be useful for 
solving multi-objective optimization problems, we must not forget that they do it as if it 
were a problem with a single objective. The search for other alternatives resulted in the 
development of the techniques in the second category according to Figure 6. Techniques in 
this category introduced two very important elements: the use the populations and the use 
of special handling of objectives. To illustrate this group of techniques, the Vector Evaluated 
Genetic Algorithm (VEGA) and the lexicographic ordering are going to be discussed. VEGA 
is so important because it was the first GA used as a tool for solving MOOP. On the other 
hand, during the decade of the 80's and early 90's, the MOEAs were characterized by the use 
of aggregative techniques (already discussed), target vector optimization and lexicographic 
ordering; so, it would be illustrative to review this last one. 

3.2.1 Vector Evaluated Genetic Algorithm (VEGA)  

The first multi-objective genetic algorithm was implemented by Schaffer (Schaffer, 1984), 
and it was inspired on the “simple GA” (SGA). After making some modifications to the first 
implementation, Schaffer named it “Vector Evaluated Genet Algorithm” (Schaffer, 1985). 
Schaffer proposed the creation of one sub-population per each objective function of the 
problem on each generation of the algorithm. So, assuming a population size of N for a 
problem with k objective functions, k subsets (sub-populations) of size N/k should be 
generated; then the k sub-populations must be shuffled together to obtain the new 
population of size N. Finally, the GA will apply classical operators. Figure 7 shows the 
selection scheme of VEGA. 

The main weakness of this algorithm comes from the fact that it promotes the conservation 
of solutions with very good performance in only one of the k objectives of the problem, by 
eliminating the solutions that have what Schaffer called "middling" performance (acceptable 
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performance in all objective functions). The problem mentioned is known in genetics like 
“speciation”, and it is obviously undesirable in solving multi-objective problems because it 
goes against the goal of finding compromise solutions. 

In more general terms, the performance of this method is compared with the linear 
combination of objectives, where the weights depend on the distribution of the population 
in each generation as demonstrated by Richardson et al (Richardson et al., 1989). Therefore 
this technique has not the ability to produce Pareto optimal solutions in the presence of non-
convex search spaces. 

 
Fig. 7. Scheme of VEGA selection 

3.2.2 Lexicographic ordering  

This method, which is commonly grouped with the methods that articulate some 
preferences a priori according with the Marler and Arora’s classification (Marler and Arora, 
2004), or the named as a priori methods (Miettinen, 2008), begins with the arrangement of all 
objective functions according to their relative importance. Subsequently, the most important 
objective function is minimized subject to the original constraints. Then, we formulate a 
similar problem with the second most important objective function and an extra restriction. 
This procedure is repeated until the k objectives have been considered.  The first problem to 
be solved, assuming that f1 is the most important objective, has the following form: 

 minimize	 ଵ݂(ݔԦ) (18) 

(Ԧݔ)݃			:ݐ	ݐ݆ܾܿ݁ݑݏ       ≤ 0			݆ = 1,2… ,݉ (19) 

By solving (5) and (6), we obtain ݔଵሬሬሬሬԦ∗ and f1*=f(ݔଵሬሬሬሬԦ∗), and then, the next problem is formulated:  

 minimize	 ଶ݂(ݔԦ) (20) 

(Ԧݔ)݃			:ݐ	ݐ݆ܾܿ݁ݑݏ      ≤ 0			݆ = 1,2… ,݉ (21) 

 			 ଵ݂(ݔԦ) = ଵ݂∗ (22) 

Once the problem in (7), (8) and (9) is solved, ݔଶሬሬሬሬԦ∗ and f2*=f(ݔଶሬሬሬሬԦ∗) are obtained. This procedure 
is then repeated over and over, until all objective functions have been taken into account. 
The final solution obtained ݔሬሬሬሬԦ∗ is considered the best solution of the problem.  
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The greatest strength of this method lies in its simplicity, and its greatest weakness comes 
from the high level of dependence of their performance with the order of importance chosen 
for each objective function. Because this method takes into account one objective at a time, it 
tends to promote only certain goals, when there are others in the problem, making the 
process to converge to a particular area of the Pareto front. 

3.3 Pareto based approaches 

As the reader may have observed, all techniques discussed so far produce Pareto front 
members implicitly, because they do not use the Pareto-optimality concept as a search 
mechanism, nevertheless there are also a set of methods that employ the definition of 
Pareto-optimality to conduct the search for solutions. In 1989 Goldberg suggested the use of 
a fitness function based on the concept of Pareto-optimality to deal with the problem of 
speciation identified by Schaffler. Goldberg's proposal was to find the set of individuals that 
are Pareto non-dominated by the rest of the population and assign them the rank 1, then 
removing them from contention, and then find a new set of non-dominated individuals and 
rank them as 2, and so forth. This technique is named Pareto ranking.  

The main weakness of this method is that there is not yet an efficient algorithm to check 
non-dominance in a set of feasible solutions (Coello, 1996). As the size of population and the 
number of objective functions grow up, efficiency of algorithms is worse; however, Pareto 
ranking is the most appropriate method to generate an entire Pareto front in a single run of 
the GA (Coello, 1999). Several algorithms that use Pareto based approaches have been 
developed; next subsections will discuss some of them.  

3.3.1 Multiple Objective Genetic Algorithm (MOGA) 

A scheme in which the rank of an individual depends on the number of individuals from a 
certain population, by which it is dominated, was proposed by Fonseca and Fleming 
(Fonseca and Fleming, 1993). For example, lets suppose generation t, all non-dominated 
individuals are assigned rank 1, while dominated ones are assigned a rank of (1+pi(t)) where 
pi(t) is the number of solutions that dominates the solution xi. The individual xi in the 
generation t, can be assigned the next rank. 

,ݔ)݇݊ܽݎ	  (ݐ = 1 +   (23)		(௧)

Fitness assignment is performed in the following way (Fonseca and Fleming, 1993). 

1. Population is sort by the assigned rank 
2. Fitness is assigned to individuals by interpolating from the best (rank 1) to the worst 

(rank n). Interpolation is usually linear but it can be non linear. 
3. The fitness of individuals with the same rank is averaged, so all of them will be 

sampled at the same rate. 

A potential weakness of this algorithm is the premature convergence produced by a large 
selection pressure because of blocked selected fitness (Goldberg and Deb, 1991). To avoid 
this, Fonseca and Fleming used niche-formation method to distribute the population over 
the Pareto-optimal region; however instead of performing sharing on the parameters values, 
they used sharing on the objective function values.  
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This algorithm has been widely accepted and used because of its efficiency and relatively 
easy implementation. As other Pareto ranking techniques, this algorithm is highly 
dependent of an appropriate selection of the sharing factor, but Fonseca and Fleming 
developed a methodology to compute this factor for their approach (Fonseca and Fleming, 
1993). 

3.3.2 Non-dominated Sorting Genetic Algorithm (NSGA) 

The NSGA was proposed by Srinivas and Deb (Srinivas and Deb, 1993). This method is 
characterized in that the fitness assignment is performed by a rank of dominance. It does not 
work with a functional value, but with a dummy fitness.   

In the first step of this method, the population is ranked based on non-domination. All non-
dominated individuals are put into a category with a dummy fitness proportional to 
population size. Then, this group of classified individuals is ignored and another layer of 
non-dominated individuals is considered. This process continues until all individuals in the 
population have been classified. Because individuals of the first front have the highest value 
of fitness, they will be copied more times than the rest of the population. This method 
allows the search of non-dominated regions with quick convergence results. The efficiency 
of this method lies in the way a group of objectives is replaced by a dummy function using a 
non-dominated sorting procedure. According with Srinivas and Deb, with this approach 
maximization and minimization with any number of objectives can be handled (Srinivas 
and Deb, 1994). Among other researchers, Coello has reported that this approach is less 
efficient than the MOGA, and more sensitive to the value of the sharing factor. 

3.3.3 Niched Pareto Genetic Algorithm (NPGA) 

A tournament selection scheme based on Pareto dominance was proposed by Horn and 
Nafpliotis (Horn and Nafpliotis, 1993). The main idea of this approach is to use tournament 
selection based on Pareto dominance with respect to a subset of the population (typically 
around 10 individuals). In case of ties (when both competitors were either dominated or 
non-dominated), the decision is made by fitness sharing in both, fitness function space and 
in the decision variables space.  

3.4 Other approaches 

Evolutionary algorithms have proved to be very efficient in solving several multi-objective 
optimization problems, because they have good ability of global exploration and fast 
convergence speed, all due to the use of nature-inspired operators (crossover, mutation, 
selection). However, they also have been criticized for the little use made of the information 
about the problem, the high random component they possess and the large number of 
evaluations of the problem they use. Some of these problems are being addressed through 
proposals such as EDAs and Scatter Search, in which operators are deterministic or employ 
techniques that reduce the number of evaluations.  

Another recent trend to address the weaknesses of evolutionary algorithms is combining 
them with classical optimization methods or other metaheuristics. This type of technique 
has been used successfully in single-objective optimization, leading to what is called 
“memetic algorithms” (Moscato, 1999).  
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In this section, the general idea behind the EDA is discuss, because it is the technique used 
in solving the problem of drawing graphs. Section 4.2 of this chapter describes the used 
algorithm called "Hybrid multi-objective optimization estimation of distribution algorithm". This 
algorithm is a hybridized EDA with Hill Climbing.  

The main idea behind EDAs is to use the probability distribution of the population in the 
reproduction of the new offspring. EDAs are a natural outgrowth of GA in which statistical 
information of the population is used to build a probability distribution. Then, this 
distribution is used to generate new individuals by sampling. Because probability 
distribution replaces Darwinian operators, this kind of algorithm is classified as non-
Darwinian evolutionary algorithm.  

The general procedure of the EDA can be sketched as shown in figure 8. 

 
Fig. 8. Estimation of the Distribution Algorithm (Talbi, 2009) 

EDAs are classified according to the level of variable-interaction they use in their 
probabilistic model: 

• Univariate: This class of EDAs suppose that there is not interaction among problem-
variables. 

• Bivariate: This class of EDAs suppose that there is interaction between two variables. 
• Multivariate: In this class of EDAs, the probabilistic distribution models the interaction 

among more than two variables. 

Although initially EDAs were intended for combinatorial optimization, now they have been 
extended to the continuous domain. Nowadays the application field of EDAs not only 
addresses mono-objective optimization issues, but it has been created a discipline related to 
their application on multi-objective problems. The group of EDAs applied to multi-objective 
optimization is called “multi-objective optimization EDAs” (MOEDAs) (Marti, 2008). Most of 
the actual MOEAs are modified single-objective EDAs whose fitness assignments are 
replaced by multi-objective assignments. 

According to some researchers, there are several aspects that are crucial in the 
implementation of multi-objective solutions when MOEDAs are used; some of them are:  

• Fitness assignment: Since several objectives have to be taken into account; this aspect is 
very important and more complex than in single-objective optimization. 

• Diversity preservation: In order to reach a good coverage of the Pareto front, population 
diversity is critical. 

Template of the EDA algorithm
t=1
Generate randomly a population of n individuals
Initialize a probability model Q(x)
While Termination criteria are not met Do

Create a population of n individuals by sampling from Q(x)
Evaluate the objective function for each individual
Select m individuals according to a selection method
Update the probabilistic model Q(x) using selected population and f() values
t=t+1

End While
Output: Best found solution or set of solutions
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• Elitism: Elitism is the mechanism used to preserve non dominated solution through 
successive generations of the algorithm. 

With these aspects in mind, next section will discuss the implementation of the proposed 
solution to the graph drawing problem.  

4. An application of a multi-objective optimization hybrid estimation of 
distribution algorithm for graph drawing problem  

Graph drawing problems are a particular class of combinatorial optimization problems 
whose goal is to find plane layout of an input graph in such a way that certain objective 
functions are optimized. A large number of relevant problems in different domains can be 
formulated as graph layout problems. Among these problems are optimization of networks 
for parallel computer architectures, VLSI circuit design, information retrieval, numerical 
analysis, computational biology, graph theory, graphical model visualization, scheduling 
and archaeology. Most interesting graph drawing problems are NP-hard and their 
decisional versions are NP-complete (Garey and Johnson, 1983), but, for most of their 
applications, feasible solutions with an almost optimal cost are sufficient. As a consequence, 
approximation algorithms and effective heuristics are welcome in practice (Díaz et al., 2002). 

Visualization of complex conceptual structures is a support tool used on several engineering 
and scientific applications. A graph is an abstract structure used to model information. 
Graphs are used to represent information that can be modeled as connections between 
variables, and so, to draw graphs to put information in an understandable way. The 
usefulness of graphs visualization systems depends on how easy is to catch its meaning, and 
how fast and clear is to interpret it. This characteristic can be expressed through of aesthetic 
criteria (Sugiyama, 2002) as the edges’ crossing minimization, the reduction of drawing area 
and the minimization of aspect ratio, the minimization of the maximum length of an edge, 
among others.  

In our approach the three first objectives are used and we can make a multi-objective 
optimization formulation for the graph drawing problem.  On the one hand, to enhance the 
legibility of the graph drawing is very important to keep as low as possible the number of 
crosses, as well as to keep a good aspect ratio in the draw. Another point is to maintain 
symmetric the drawing region (same drawing height and width). It is very desirable too, to 
keep the drawing area small. This last requirement avoids the waste of screen space. These 
objectives are in conflict with each other. To reach the minimum crossing edges in the graph 
drawing is frequently needed a bigger area. At the same time, for minimizing the aspect 
ratio of the graph is needed to draw the nodes in a symmetrically delimited region. The 
reduction of the used area increases the number of crosses because as closer the edges are, 
there is less space to do the crossing edges minimization. Besides, area reduction of the 
sketching also affects the symmetrical delimitation of the region used by the graph. The 
aspect ratio minimization is affected by the crossing edges minimization due that just to get 
a node outside the defined area contributes to the imbalance of the symmetry reached until 
that moment. So, the reduction of the drawing area affects directly the aspect ratio of the 
graph because generally this kind of reduction is not symmetric. A first approach of the 
multi-objective optimization problem for these three objectives for graph drawing could be 
found in (Enriquez et al., 2011). 
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4.1 Formulation of the multi-objective optimization for graph drawing problem 

At the beginning, we have a graph given by its edges, that is, a pair of vertices. To each 
vertex is assigned a pair of coordinates. All coordinates of the vertices of the graph are 
randomly generated in the cartesian plane. If any two vertices have the same coordinates 
then new coordinates are randomly generated for one of them. The candidate solution is 
represented as a vector of pairs of coordinates. The input information, i.e., the list of edges of 
the graph is used by the algorithm to draw the edges in the best manner in order to fulfill a 
tradeoff between all considered objective functions.  

In this chapter the following in conflict objectives have been considered: 

• Minimization of the number of crossing edges in the graph: The total number of 
crossing edges of the graph has to be minimized (f1). 

• Minimization of the graph area: to minimize the total space used by the graph (f2). 
• Minimization of the graph aspect ratio: the graph has to be visualized in an 

approximate square area (f3). 

The vector of the objective functions is denoted by F=(f1,f2,f3). The first function f1 is 
calculated as follows: 

To draw a line between two vertices,	vଵ(xଵ, yଵ)		and 		vଶ(xଶ, yଶ)		we use the following 
equation: 

 y − yଵ = ୷మି୷భ୶మି୶భ (x − xଵ) (24) 

and solve the equation system for knowing if the two lines corresponding to edges have an 
intersection point. The function f1 sums the number of intersection points between edges of 
this drawing. 

 aଵx + bଵy = cଵ (25) 

 aଶx + bଶy = cଶ (26) 

The second function f2 is defined as the area of the rectangle containing the graph drawing. 
The following formula is used: 

 S = (x୫ୟ୶ − x୫୧୬) ∙ (y୫ୟ୶ − y୫୧୬) (27) 

where x୫୧୬and x୫ୟ୶	are the least and greatest values on the abscise axis, and y୫୧୬ and y୫ୟ୶ 
are the least and greatest values on the vertical axis. S is the value of the function f2. 

Finally, the f3 function is obtained as a ratio of (x୫ୟ୶ − x୫୧୬) on (y୫ୟ୶ − y୫୧୬) or vice versa, 
depending on which was the least. f3 is the value of this ratio, and it is knowing as aspect 
ratio. 

We use the Pareto front approach for the multi-objective optimization problem (Coello and 
López, 2009), (Deb, 2001) and we give the final Pareto front and also give as more 
promissory solution, that solution closest to the origin, because it resumes all objective 
tradeoffs. The distance to origin is calculated evaluating the Euclidean distance using the 
standardized values of the objectives of the problem.   
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4.2 Hybrid multi-objective optimization estimation of distribution algorithm 

This section presents a description of the components of the proposed algorithm, which is 
built of three main components. One of them the Univariate Marginal Distribution 
Algorithm (UMDA) (Mühlenbein et al., 1998) adapted for multi-objective optimization 
problems is used for exploration of the search space, and the second component the 
Random Mutation Hill Climbing (RMHC) algorithm is used for the exploitation. Finally, a 
component for calculating the Pareto front is used. 

The pseudocode of the multi-objective optimization evolutionary hill climbing estimation of 
distribution algorithm (MOEA-HCEDA) is as shows in figure 9. 

 
Fig. 9. Pseudocode of MOEA-HCEDA 

 
Fig. 10. Pseudocode of RMHC 

ParetoInitialPopulation( ): In the first step a random population with size 2*size of 
population is generated. After that, the first Pareto front is obtained using the dominance 
solution. The first approximated Pareto front is saved in D. 

RandomMutationHillClimbing( ): In Random Mutation Hill Climbing (Mitchell et al., 1994), 
a string is chosen randomly and its fitness is evaluated. The string solution is mutated 
randomly choosing a single locus, and the new solution is evaluated. If mutation leads to an 
equal or higher fitness, the new string solution replaces the old. This procedure is iterated 
until the optimum has been found or a maximum number of function evaluations have been 
performed. The algorithm RMHC works as figure 10 shows.  

CalculateParetoPopulation( ): In the first step, the last approximated Pareto front saved in D୪ିଵ is joined with the recently generated population and saved in D୪. In the second step the 
new approximated Pareto front is calculated from D୪ିଵ ∪ D୪.  The new approximated Pareto 
front is saved in D୪ିଵ. 

MOEA-HCEDA

Pseudocode MOEA-HCEDA
ParetoInitialPopulation( );
Repeat for  ι = 1, 2, . . . until stop criterion is verified.

Obtain estimate of joint probability distribution 

Sample M individuals (new population) from 
RandomMutationHillClimbing_RMHC( );
CalculateParetoPopulation();

End repeat 
End MOEA-HCEDA
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RMHC

Pseudocode RandomMutationHillClimbing_RMHC
Choose a binary string at random. Call this string best-evaluated solution.
Mutate a bit chosen a random in best-evaluated.
Compute the fitness of the mutated string. If the fitness is greater than the 

fitness of the best-evaluated, then set the best-evaluated to the mutated 
string.

If the maximum number of function evaluations has been performed return the 
best evaluated, otherwise, go to step 2.

End RandomMutationHillClimbing_RMHC
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UMDA is a particular case of EDAs, introduced by Mühlenbein (Mühlenbein et al., 1998), 
where the variables are totally independent. The n-dimensional joint probability is a product 
of n univariate probability distributions (Larrañaga & Lozano, 2002). 

Example:  

(ݔ)  = ∏ ୀଵ(ݔ)  (28) 

The joint probability distribution of each generation is estimated using the individuals 
)(xpl selected. The joint probability distribution factorizes as the product of independent 

univariate distributions. 

4.3 Dominance index to evaluate solutions in Pareto front 

This section describes how to define a measure of quality (dominance index) for each 
solution stored in the Pareto front. The objective of this dominance index is to order the 
elements of the Pareto front. 

Definition. Dominance index of a solution xሬԦ: Let ୰࣪, ୱ࣪ be two approximate Pareto fronts and 
let r( ୰࣪) be the number of elements of ୰࣪ and s( ୱ࣪) the number of elements of ୱ࣪. The 
dominance index of a solution xሬԦ is defined as the number of times n(xሬԦ) that a solution xሬԦ୰ ∈ ୰࣪ dominates solutions xሬԦୱ ∈ ୱ࣪, divided by s( ୱ࣪). 
4.4 Quality index to evaluate Pareto front performance 

Based on the definition of dominance index of a solution xሬԦ, the quality index of Pareto front 
is constructed. Given two Pareto fronts, a relative evaluation of the first front ୰࣪  with 
respect to the second ୱ࣪  can be given as follows: 

Let  xሬԦ୧(୰) be one solution of the first Pareto front and let  n୧ = n(xሬԦ୧(୰))  be the number of times xሬԦ୧(୰) dominates elements of the second Pareto front ୱ࣪. To normalize this quantity in the 
dominance index definition, it is divided by the number of solutions of the second front s( ୱ࣪). The quantity obtained is the quality index to evaluate the solution xሬԦ୧(୰).  
Definition. Quality Index of the first Pareto front with respect to the second: Let now ∑n୧ be 
the sum of the number of times all the solutions of the first Pareto front dominate the 
solutions of the second front. To normalize this quantity, it is divided by the number of 
solutions in ୰࣪ front. This last quantity can be considered a relative quality index of the first 
Pareto front with respect to the second. 

4.5 Experimental design 

In a previous paper a factorial experiment was performed (Enriquez et al., 2011) where the 
best combination of factors found was: number of generations equal to 500 and population 
size equal to 150. These parameters were the ones that reached the best results of the 
algorithm. Seven graphs were selected from the papers (Rossete, 2000),(Branke, et al., 
1997),(Eleoranta and Mäkinen, 2001), (Hobbs and Rodgers, 1998), (Rossete and Ochoa, 1998) 
to use them as benchmarks, but only the results of the composite graph (Enriquez et al., 
2010) is commented in this chapter because this graph is the biggest one. It is a no planar 
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graph with a total of 40 vertices and 69 edges. A total of ten runs for the combination of 
factors (500,150) were executed, each run has an output that is an approximation to the 
Pareto Front. The evaluation of the convergence to the Pareto front was performed with the 
quality index. 

4.6 Results and discussion 

The results of this experiment appear on table 1, figures 11, 12, 13, 14, 15, 16, and 17. Table 1 
shows the best graphs obtained for ten repetitions of MOEA-HCEDA algorithm. For each of 
the best solution, the table shows run, graph number, total number of edges intersected, 
area size and aspect ratio. A distance to origin is used to evaluate the best solution obtained 
on each repetition. This distance is calculated evaluating the Euclidean distance using the 
standardized values of the three objectives of the problem. The optimal Pareto value is 
obtained in the graph 267 of the 5th repetition. The results show the average number 
crossing is 16.1, average area is 106318.6, and average aspect ratio is 1.0632. 

 
Table 1. Best solution on each run 

Figure 11 shows the average for ten runs of the Pareto front quality index printed on each 
generation of the algorithm, a convergent curve is showed. The results of the experiments 
showed that the algorithm converges to an optimal Pareto front.  

Figures 12, 13, 14, 15, 16, and 17 show the evolution of graphs corresponding to run 5. 
Figure 12 shows the graph 16 of the generation 1. This graph has 412 edges crossing, 285270 
total area and 1.01698 aspect ratio.  Figure 13 shows the graph 2555 in the generation 100. 
This graph is better than the graph 16 because the edges crossing  decrease to 29, total area 
decreases to 116620 and aspect ratio decreases to 1.0088. Figure 14 shows the graph 5822 of 
the generation 200. This graph is better in two objectives compared to 16th and 2555th graphs 
because the edges crossing  decrease to 24, total area decreases to 110500 but the aspect ratio 

 Objective Functions 

RUN GRAPH 
NUMBER

NCROSS AREA ASPECT 
RATIO

DISTANCE TO 
ORIGIN 

1 55 17 106446 1.079617834 0.679992707 
2 115 18 89951 1.04778157 0.489841704 
3 130 22 111132 1.058641975 0.702735094 
4 230 10 128520 1.111764706 0.465940815 
5 267 9 91506 1.003311258 0.343328661 
6 303 12 155298 1.185082873 0.815347591 
7 317 18 79520 1.014285714 0.368875792 
8 420 16 93852 1.063973064 0.458813972 
9 500 22 101661 1.064724919 0.559167084 
10 520 17 105300 1.00308642 0.44348268 
Total Average: 16.1 106318.6 1.063227033 

The best solution obtained 

RUN GRAPH 
NUMBER NCROSS AREA ASPECT 

RATIO 
DISTANCE TO 

ORIGIN 
5 267 9 91506 1.0033113 0.343328661 
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increases to 1.0461. Figure 15 shows the graph 10028 of the generation 300. This graph is 
better in two objectives than the other three graphs because the edges crossing  decrease to 
14, total area decreases to 109525 and the aspect ratio newly decreases to 1.0369. Figure 16 
shows the graph 13924 of the generation 400. This graph is better in two objectives than the 
other  four graphs because the total area decreases to 102700 and the aspect ratio decreases 
to 1.0284, the edges crossing  is manteined in 14 crosses.  Figure 17 shows the graph 17470 of 
the generation 500. This graph is the best in all objectives because the edges crossing 
decreases to 9, total area decrease to 91506 and aspect ratio decreases to 1.0033. 

 
Fig. 11. Quality index for Pareto front comparison. 

 
Fig. 12. Generation 1, graph 16. 

 
Fig. 13. Generation 100, graph 2555 

 
Fig. 14. Generation 200, graph 5822. 
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Fig. 15. Generation 300, graph 10028. 

 
Fig. 16. Generation 400, graph 13924. 

 
Fig. 17. Generation 500, graph 17470 

4.7 Conclusions and future work 

The main contributions of this application is the test of the hybrid MOEA-HCEDA 
algorithm and the quality index based on the Pareto front used in the graph drawing 
problem. The Pareto front quality index obtained on each generation of the algorithm 
showed a convergent curve. The results of the experiments showed that the algorithm 
converges. A graphical user interface was constructed providing users with a tool for a 
friendly and easy to use graphs display. The automatic drawing of optimized graphs makes 
it easier for the user to compare results appearing in separate windows, giving the user the 
opportunity to choose the graph design which best fits their needs. 

To continue this research, the hybridization MOEA-HCEDA with others algorithms, for 
example using other types of EDAs is a next objective. The testing of the algorithms using 
others more complex benchmarks and, the comparison of the results between different 
variants is a very challenging and interesting task for future work.  The graphical 
presentation can be friendlier and dispose other facilities as, for example, the printing of the 
results. 



 
Evolutionary Multi-Objective Algorithms 

 

75 

5. Future directions for research 

Although there are many versions of evolutionary algorithms that are tailored to multi-
objective optimization, theoretical results are apparently not yet available. Rudolph (1999) 
has shown that results known from the theory of evolutionary algorithms in case of single 
objective optimization do not carry over to the multi-objective case. 

Assuming that the evolutionary algorithms are Markov processes, and that the fitness 
functions are partially ordered, Rudolph presented some theoretical results about the 
convergence of multi objective algorithms. In particular some properties of the operators 
have to be checked to establish the algorithm convergence. This theoretical analysis shows 
that a special version of an evolutionary algorithm converges with probability 1 to the 
Pareto set for the test problem under consideration, but this tools are not used frequently.  

Although, there exist a number of multi-objective GA implementations and there exist a 
number of GA applications to multi-objective optimization problems, there not exists 
systematic study to speculate what problem features may cause a multi-objective GA to face 
difficulties. The systematic testing in a controlled manner on various aspects of problem 
difficulties is not so deeply addressed. Specifically, multi-modal multi-objective problems, 
deceptive multi-objective problems, multi-objective problems having convex, non-convex, 
and discrete Pareto-optima fronts, and non-uniformly represented Pareto-optimal fronts are 
not presented and systematically analyzed.  

Although some studies have compared different GA implementations (Zitzler and Thiele, 
1998), they all have presented a specific problem without an analysis about the complexity 
of the test problems. The test functions suggested until now in the literature provide various 
degrees of complexity but are not enough. The construction of test problems has been done 
without enough knowledge of how multi-objective GAs work. Thus, it will be worthwhile to 
investigate how existing multi-objective GA implementations work in the context of 
different test problems. It is intuitive that as the number of objectives increase, the Pareto-
optimal region is represented by multi-dimensional surfaces. With more objectives, multi-
objective GAs must have to maintain more diverse solutions in the non-dominated front in 
each iteration. Whether GAs are able to find and maintain diverse solutions, as demanded 
by the search space of the problem with many objectives would be a matter of interesting 
study. Whether population size alone can solve this scalability issue or a major structural 
change (implementing a better niching method) is imminent would be the outcome of such 
a study. Constraints can introduce additional complexity in the search space by inducing 
infeasible regions in the search space, thereby obstructing the progress of an algorithm 
towards the global Pareto-optimal front. Thus, creation of constrained test problems is an 
interesting area which should get emphasis in the near future. With the development of 
such complex test problems, there is also a need to develop efficient constraint handling 
techniques that would be able to help GAs to overcome hurdles caused by constraints. Some 
such methods are in progress in the context of single-objective GAs and with proper 
implementations they should also work in multi-objective GAs. Most multi-objective GAs 
that exist to date, work with the non-domination principle. It is a question if all solutions in 
a non-dominated set need not be members of the true Pareto optimal front, although some 
of them could be. This means that all non-dominated solutions found by a multi-objective 
optimization algorithm may not necessarily be Pareto-optimal solutions. Thus, while 
working with such algorithms, it is wise to check the Pareto-optimality of each of such 
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solutions (by perturbing the solution locally or by using weighted-sum single-objective 
methods originating from these solutions). In this regard, it would be interesting to 
introduce special features (such as elitism, mutation, or other diversity-preserving 
operators), the presence of which may help us to prove convergence of a GA population to 
the global Pareto-optimal front. Some such proofs exist for single-objective GAs (Davis and 
Principe, 1991; Rudolph, 1994) and a similar proof may also be attempted for multi-objective 
GAs. Elitism is a useful and popular mechanism used in single-objective GAs. Elitism 
ensures that the best solutions in each generation will not be lost. They are directly carried 
over from one generation to the next and what is important is that these good solutions get a 
chance to participate in recombination with other solutions in the hope of creating better 
solutions. In the context of single-objective optimization, there is only one best solution in a 
population. But in multi-objective optimization, all non-dominated solutions of the first 
level are the best solutions in the population. There is no way to distinguish one solution 
from the other in the non-dominated set. Then if we like to introduce elitism in multi-
objective GAs, should we carry over all solutions in the first non-dominated set to the next 
generation! This may mean copying many good solutions from one generation to the next, a 
process which may lead to premature convergence to non-Pareto-optimal solutions. How 
elitism should be defined in this context is an interesting research topic. In this context, an 
issue related to comparison of two populations also raises some interesting questions.  

There are two goals in a multi-objective optimization—convergence to the true Pareto-
optimal front and maintenance of diversity among Pareto-optimal solutions. A multi-
objective GA may have found a population which has many Pareto-optimal solutions, but 
with less diversity among them. How would such a population be compared with respect to 
another which has a fewer number of Pareto-optimal solutions but with wide diversity? The 
practitioners of multi-objective GAs must have to settle for an answer for these questions 
before they would be able to compare different GA implementations or before they would 
be able to mimic operators in other single-objective GAs, such as CHC (Eshelman, 1990) or 
steady-state GAs (Syswerda, 1989). As it is often suggested and used in single-objective 
GAs, a hybrid strategy of either implementing problem-specific knowledge in GA operators 
or using a two-stage optimization process of first finding good solutions with GAs and then 
improving these good solutions with a domain-specific algorithm would make multi-
objective optimization much faster than GAs alone.  

Test functions test an algorithm’s capability to overcome a specific aspect that a real-world 
problem may have. In this respect, an algorithm which can overcome more aspects of problem 
difficulty is naturally a better algorithm. This is precisely the reason why so much effort is 
spent on doing research in test function development. As it is important to develop better 
algorithms by applying them on test problems with known complexity, it is also equally 
important that the algorithms are tested in real-world problems with unknown complexity. 
Fortunately, most interesting engineering design problems are naturally posed as finding 
trade-offs among a number of objectives. Among them, cost and reliability are two objectives 
which are often the priorities of designers. This is because, often in a design, a solution which 
is less costly is likely to be less reliable and vice versa. In handling such real-world applications 
using single-objective GAs, often, an artificial scenario is created. Only one objective is retained 
and all other objectives are used as constraints. For example, if cost is retained as an objective, 
then an extra constraint restricting the reliability to be greater than 0.9 (or some other value) is 
used. With the availability of efficient multi-objective GAs, there is no need to have such 
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artificial constraints (which are, in some sense, user-dependent). Moreover, a single run of a 
multi-objective GA may provide a number of Pareto-optimal solutions, each of which is 
optimal in one objective with a constrained upper limit on other objectives (such as optimal in 
cost for a particular upper bound on reliability). Thus, the advantages of using a multi-
objective GA in real-world problems are many and there is the need for some interesting 
application case studies which would clearly show the advantages and flexibilities in using a 
multi-objective GA, as opposed to a single-objective GA.  

We believe that more such mentioned studies are needed to understand better the working 
principles of a multi-objective GA. An obvious outcome of such studies would be the 
development of new and improved multi-objective GAs. 
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1. Introduction

In this chapter we are going to study metaheuristics based on the Automata Theory for the
Multi-objective Optimization of Combinatorial Problems. As well known, Combinatorial
Optimization is a branch of optimization. Its domain is optimization problems where the
set of feasible solutions is discrete or can be reduced to a discrete one, and the goal is to find
the best possible solution(Yong-Fa & Ming-Yang, 2004). In this field it is possible to find a lot
of problems denominated NP-Hard, that is mean that the problem does not have a solution
in Polynomial Time. For instance, problems such as Multi-depot vehicle routing problem(Lim
& Wang, 2005), delivery and pickup vehicle routing problem with time windows(Wang
& Lang, 2008), multi-depot vehicle routing problem with weight-related costs(Fung et al.,
2009), Railway Traveling Salesman Problem(Hu & Raidl, 2008), Heterogeneous, Multiple
Depot, Multiple Traveling Salesman Problem(Oberlin et al., 2009) and Traveling Salesman
with Multi-agent(Wang & Xu, 2009) are categorized as NP-Hard problems.

One of the most classical problems in the Combinatorial Optimization Field is the Traveling
Salesman Problem (TSP), it has been analyzed for years(Sauer & Coelho, 2008) either in a
Mono or Multi-objective way. It is defined as follows: “Given a set of cities and a departure
city, visit each city only once and go back to the departure city with the minimum cost”.
Basically, that is mean, visiting each city once, to find an optimal tour in a set of cities, an
instance of TSP problem can be seen in figure 1. Formally, TSP is defined as follows:

min
n

∑
i=1

n

∑
j=1

Cij · Xij (1)

Subject to:
n

∑
j=1

Xij = 1, ∀i = 1, . . . , n (2)

n

∑
j=1

Xij = 1, ∀j = 1, . . . , n (3)

∑
i∈κ

∑
j∈κ

Xij ≤ |κ| − 1, ∀κ ⊂ {1, . . . , n} (4)

Xij = 0, 1∀i, j (5)

4
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Where Cij is the cost of the path Xij and κ is any nonempty proper subset of the cities 1, . . . , m.
(1) is the objective function. The goal is the optimization of the overall cost of the tour. (2),
(3) and (5) fulfills the constrain of visiting each city only once. Lastly, Equation (4) set the
subsets of solutions, avoiding cycles in the tour.

Fig. 1. TSP instance of ten cities

TSP has an important impact on different sciences and fields, for instance in Operations
Research and Theoretical Computer Science. Most problems related to those fields, are based
in the TSP definition. For instance, problems such as Heterogeneous Machine Scheduling(Kim
& Lee, 1998), Hybrid Scheduling and Dual Queue Scheduling(Shah et al., 2009), Project
Management(de Pablo, 2009), Scheduling for Multichannel EPONs(McGarry et al., 2008),
Single Machine Scheduling(Chunyue et al., 2009), Distributed Scheduling Systems(Yu
et al., 1999), Relaxing Scheduling Loop Constraints(Kim & Lipasti, 2003), Distributed
Parallel Scheduling(Liu et al., 2003), Scheduling for Grids(Huang et al., 2010), Parallel
Scheduling for Dependent Task Graphs(Mingsheng et al., 2003), Dynamic Scheduling on
Multiprocessor Architectures(Hamidzadeh & Atif, 1996), Advanced Planning and Scheduling
System(Chua et al., 2006), Tasks and Messages in Distributed Real-Time Systems(Manimaran
et al., 1997), Production Scheduling(You-xin et al., 2009), Cellular Network for Quality
of Service Assurance(Wu & Negi, 2003), Net Based Scheduling(Wei et al., 2007), Spring
Scheduling Co-processor(Niehaus et al., 1993), Multiple-resource Periodic Scheduling(Zhu
et al., 2003), Real-Time Query Scheduling for Wireless Sensor Networks(Chipara et al., 2007),
Multimedia Computing and Real-time Constraints(Chen et al., 2003), Pattern Driven Dynamic
Scheduling(Yingzi et al., 2009), Security-assured Grid Job Scheduling(Song et al., 2006), Cost
Reduction and Customer Satisfaction(Grobler & Engelbrecht, 2007), MPEG-2 TS Multiplexers
in CATV Networks(Jianghong et al., 2000), Contention Awareness(Shanmugapriya et al.,
2009) and The Hard Scheduling Optimization(Niño, Ardila, Perez & Donoso, 2010) had been
derived from TSP. Although several algorithms have been implemented to solve TSP, there is
no one that optimal solves it. For this reason, this chapter discuss novel metaheuristics based
on the Automata Theory to solve the Multi-objective Traveling Salesman Problem.

This chapter is structured as follows: Section 2 shows important definitions to understand the
Multi-objective Combinatorial Optimization and the Metaheuristic Approximation. Section
3, 4 and 5 discuss Evolutionary Metaheuritics based on the Automata Theory for the
Multi-objective Optimization of Combinatorial Problems. Finally, Section 6 and 7 discuss
the Experimental Results of each proposed Algorithm using Multi-objective Metrics from the
specialized literature.
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2. Preliminaries

2.1 Multi-objective optimization

The Multi-objective optimization consists in two or more objectives functions to optimize and
a set of constraints. Mathematically, the Multi-objective Optimization model is defined as
follows:

optimize F(X) = { f1(X), f2(X), . . . , fn(X)} (6)

Subject to:
H(X) = 0 (7)

G(X) ≤ 0 (8)

Xl ≤ X ≤ Xu (9)

Where F(X) is the set of objective functions, H(X) and G(X) are the constraints of the
problem. Lastly, Xl and Xu are the bounds for the set of variables X.

Unlike to Mono-objective Optimization, Multi-objective Optimization deal with searching a
set of Optimal Solutions instead of a Optimal Solution. For instance, table 1 shows three
solutions for a particualr Mono-objective Problem. If we suppose that those are related
to a maximization problem then the Optimal Solution (found) is the solution 1 otherwise
(minimization) will be the solution 2. On the other hand, in table 2 can be seen three solutions
for a particular Tri-objective Problem. Thus, if we suppose that all the components of the
solutions are related with a minimization problem, solution 2 is a dominated solution due to
all the components (0.8, 0.9 and 1.0) are the biggest values. On the other hand, solution
0 and 1 are no-dominated solutions due to in the first and second component (0.6 and 0.4)
solution 0 is bigger than the relative components of the solution 1 but in the third component
(0.5) solution 0 is lower than the same component in solution 1. Both examples show the

k F(Xk)
0 10
1 20
2 5

Table 1. Solutions for a particular Mono-objective Problem

difference between Mono-objective and Multi-objective Optimization. While the first deal
with finding the Optimal Solution, the last does with finding a set of Optimal Solutions. In
Combinatorial Optimization, the set of Optimal Solution is called Pareto Front. It contains all
the no-dominated solutions for a Multi-objective Problem. Figure 2 shows a Pareto Front for
a particular Tri-objective Problem. Lastly, it is probably that some Multi-objective Problems

k F(Xk) = { f0(Xk), f1(Xk), f2(Xk)}
0 {0.6, 0.4, 0.5}
1 {0.2, 0.3, 0.8}
2 {0.8, 0.9, 1.0}

Table 2. Solutions for a particular Tri-objective Problem

have an infinite Pareto Front, in those cases is necessary to determinate how many solutions
are required, for instance, using a maximum number of solution permitted in the Pareto Front.
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Fig. 2. Pareto Front for a particular Tri-objective Problem

2.2 Tabu search

Tabu Search(Glover & Laguna, 1997) is a basic local search strategy for the Optimization of
Combinatorial Problems. It is defined as follows: Given S as the Initial Solutions Set.

Step 1. Selection. Select x ∈ S

Step 2. Perturbation. Perturbs the solution x for the purpose of knowing its Neighborhood
(N(x)). Perturbing a solution means to modify the solution x in order to obtain a new solution
(xi

′
). The solutions found are called Neighbors, and those represent the Neighborhood.

For instance, figure 3 shows three perturbations for a x solutions and the new solutions
x1

′
,x2

′
and x3

′
found. The perturbation can be done according to the representation of the

solutions. Regularly, the representations of the solutions in Combinatorial Problems are based
on Discrete Structures such as Vectors, Matrices, Queues and Lists. Lastly, good solutions are
added to S.

Setp 3. Check Stop Condition. The stop condition can be delimited using rules such as number
of execution without improvement or maximum number of iteration exceeded.

Recently, novels Tabu Search inspired Algorithms have been developed in order to
solve Combinatorial Problems such as Permutation Flow Shop Scheduling(Ren et al.,
2011), Displacement based on Support Vector(Fei et al., 2011), Examination Timetabling
Problem(Malik et al., 2011), Partial Transmit Sequences for PAPR Reduction(Taspinar et al.,
2011), Inverse Problems(An et al., 2011), Fuzzy PD Controllers(Talbi & Belarbi, 2011b),
Instrusion Detection(Jian-guang et al., 2011), Tel-Home Care Problems(Lee et al., 2011),
Ant Colony inspired Problems(Zhang-liang & Yue-guang, 2011), Steelmaking-Continuous
Casting Production Scheduling(Zhao et al., 2011), Fuzzy Inference System(Talbi & Belarbi,
2011a) and Coordination of Dispatchable Distributed Generation and Voltage Control
Devices(Ausavanop & Chaitusaney, 2011).

84 Real-World Applications of Genetic Algorithms



Evolutionary Algorithms Based on the Automata Theory for the Multi-Objective Optimization of Combinatorial Problems 5

Fig. 3. The Neighborhood of a solution x is known after being perturbed

2.3 Genetic algorithms

Genetic Algorithms are Algorithms based on the Theory of Natural Selection(Wijkman, 1996).
Thus, Genetic Algorithms mimics the realBehavior Genetic Algorithms(Fisher, 1930) through
three basic steps: Given a set of Initial Solutions S

Step 1. Selection. Select solutions from a population. In pairs, select two solutions x, y ∈ S

Step 2. Crossover. Cross the selected solutions avoiding local optimums.

Step 3. Mutation. Perturbs the new solutions found for increasing the population. The
perturbation can be done according to the representation of the solution. In this step, good
solutions are added to S

Figure 4 shows the basics steps of a Genetic Algorithm. The most known Genetic

Fig. 4. Basics steps of a Genetic Algorithm

Algorithms from the literature(Dukkipati & Narasimha Murty, 2002) are the Non-Dominated
Sorting Genetic Algorithm(Deb et al., 2002) (NSGA-II) and the Strength Pareto Evolutionary
Algorithm 2(Zitzler et al., 2001; 2002) (SPEA 2). NSGA-II uses a no-dominated sort for
sorting the solutions in different Pareto Sets. Consequently, it demands a lot of time, but
it allows a global verification of the solutions for avoiding the Local Optimums. On the
other hand, SPEA 2 is an improvement of SPEA. The difference with the first version is that
SPEA 2 works using strength for every solution according to the number of solutions that it
dominates. Consequently, at the end of the iterations, SPEA 2 has the non dominated solutions
stronger avoiding Local Optimums. SPEA 2 and NSGA-II have been implemented to solve
a lot of problems in the Multiobjective and Combinatorial Optimization fiel. For instance,
problems such as Pattern-recognition based Machine Translation System(Sofianopoulos &
Tambouratzis, 2011), Tuning of Fuzzy Logic controllers for a heating(Gacto et al., 2011),
Real-coded Quantum Clones(Xiawen & Yu, 2011), Optimization Problems with Correlated
Objectives(Ishibuchi et al., 2011), Production Planning(Yu et al., 2011), Optical and Dynamic
Networks Designs(Araujo et al., 2011; Wismans et al., 2011), Benchmark multi-objective
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optimization(McClymont & Keedwell, 2011) and Vendor-managed Inventory(Azuma et al.,
2011) have been solved using SPEA and NSGA-II.

2.4 Simulated Annealing algorithms

Simulated Annealing(Kirkpatrick et al., 1983) is a generic probabilistic metaheuristic based
in the Annealing in Metallurgy. Similar to Tabu Search, Simulated Annealing explores the
neighborhood of solutions being flexible with no-good solutions. That is mean, accepting bad
solutions as well as good solution, but only in the first iterations. The acceptation of a bad
solution is based on the Boltzmann Probabilistic Distribution:

P(x) = e
(
−
(

E
Ti

))
(10)

Where E is the change of the Energy and Ti is the temperature in the moment i. In the first
level of the temperature, bad solutions are accepted as well, anyways, when the temperature
go down, Simulated Annealing behaves similar to Tabu Search (only accept good solutions).

Recentrly, similar to Genetic Algoritms and Tabu Search, many problems have been solved
using Simulated Annealing metaheuristic. For instance, Neuro Fuzzy - SystemsCzabaski
(2006), Contrast Functions for BSSGarriz et al. (2005), Cryptanalysis of Transposition
CipherSong et al. (2008), Transmitter-Receiver Collaborative-Relay BeamformingZheng et al.
(2011) and Two-Dimensional Strip Packing ProblemDereli & Sena Da (2007) have been solved
through Simulated Annealing inspired algorithms.

2.5 Deterministic Finite Automata

Formally, a Deterministic Finite Automata is a Quint-tuple defined as follows:

A = (Q, Σ, δ, q0, F) (11)

Set of transitions δ. The set of transitions (δ) describes the behavior of the automata. Let a ∈ S
and q, r ∈ Q, then the function is defined as follows:

δ(q, a) = r (12)

Example 1. Let A = (Q, Σ, δ, q0, F), where Q = {q0, q1, q2}, S = {0, 1}, F = {q1} and the set of
transitions δ defined in table 3, the representation of A using a state diagram can be derived
as shown in figure 5. Notice that each state of DFA has transitions with all the elements of Σ.

0 1
q0 q2 q0
q1 q1 q1
q2 q2 q1

Table 3. Set of transitions for the DFA of example 1

2.6 Metaheuristic Of Deterministic Swapping (MODS)

Metaheuristic Of Deterministic Swapping (MODS) (Niño et al., 2011) is a local search
strategy that explores the Feasible Solution Space of a Combinatorial Problem supported
in a data structure named Multi Objective Deterministic Finite Automata (MDFA) (Niño,
Ardila, Donoso & Jabba, 2010). A MDFA is a Deterministic Finite Automata that allows the
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Fig. 5. Automata state diagram for the example 1.

representation of the feasible solution space of a Combinatorial Problem. Formally, a MDFA
is defined as follows:

M = (Q, Σ, δ, Q0, F(X)) (13)

Where Q represents all the set of states of the automata (feasible solution space), Σ is the
input alphabet that is used for δ (transition function) to explore the feasible solution space of
a combinatorial problem, Q0 contains the initial set of states (initial solutions) and F(X) are
the objectives to optimize.

Example 1. MDFA for a Scheduling Parallel Machine Problem:

A Company has three machines. It is necessary to schedule three processes in parallel P1,P2
and P3. Each process has a duration of 5, 10 y 50 minutes respectively. If the processes can
be executed in any of the machines, how many manners the machines can be assigned to the
processes? Given the Bi-objective function in (10), what is the optimal Pareto Front?

F(X) =

{
f1(X) =

3

∑
i=1

i · Xi, f2(X) =
3

∑
i=1

(
1
i

)
· Xi

}
(14)

First of all, we need to build the MDFA. For doing this, we must define the states of the MDFA
setting the structure of the solution for each state. Therefore, if we state that Xq = (Pk, Pi, Pj)
represents the solution for the state q: machine 1 executes the process Pk, machine 2 executes
the process Pi and machine 3 executes the process Pj then the arrays solution for each state
will be Xq0 = (P1, P2, P3), Xq1 = (P1, P3, P2), Xq2 = (P2, P1, P3), Xq3 = (P2, P3, P1), Xq4 =
(P3, P1, P2) y Xq5 = (P3, P2, P1). Now, we have six states q0,q1,q2,q3,q4 and q5, those represent
the feasible solution space of the Scheduling problem proposed. The set of states for the MDFA
of this problem can be seen in figure 6. Once the set of states is defined, the Input Alphabet

Fig. 6. Set of states for the MDFA of example 2

(Σ) and the Transition Function (δ) be done. It is very important to take into account, first,
the bond of both allows to perturb the solutions in all the possible manners, in other words,
we can change of state using the combination of Σ and δ. Obviously, doing this, we avoid
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unfeasible solutions. Regarding the proposed problem, we propose the set Σ as follows:

Σ = {(P1, P2), (P1, P3), (P2, P3)} (15)

Hence, it is elemental that δ(q0, (P1, P2)) = q2, δ(q0, (P1, P3)) = q5, ... , δ(q5, (P2, P3)) = q3. At
this part, the transitions has been defined therefore the MDFA can be seen in figure 7.

Finally, the solution of each state is replaced in (10). The results can be seen in table 4 and the
Optimal Pareto Front is shown in figure 8.

State Assignments Times F(X)
qi M1 M2 M3 M1 M2 M3 f1(X) f2(X)
q0 P1 P2 P3 10 50 5 125 36.66
q1 P1 P3 P2 10 5 50 170 29.16
q2 P2 P1 P3 50 10 5 85 56.66
q3 P2 P3 P1 50 5 10 90 55.83
q4 P3 P1 P2 5 10 50 175 26.66
q5 P3 P2 P1 5 50 10 135 33.33

Table 4. Values of F(X) for the states of example 2

Fig. 7. MDFA for example 2, Parallel execution of processes

As can be seen in figure 7, the feasible solution space for this problem was described using a
MDFA. Also, unfeasible solutions are not allowed because of the definition of Σ. Nevertheless,
the general problem was not solved, only a particular case of three variables (machines) was
done. For this reason, it was easy to draw the entire MDFA. However, problems like this
are intractable for a large number of variables, in other words, when the number of variables
grow the feasible solution space grows exponentially. In this manner, it is not a good idea
to draw the entire feasible solution space and pick the best solutions. Thus, what should we
do in order to solve any combinatorial problem, without taking into account its size, using a
MDFA? Looking an answer to this question, MODS was proposed.

MODS explores the feasible solution space represented through a MDFA using a search
direction given by an elitist set of solutions (Q∗). The elitist solution are states that, when
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Fig. 8. Pareto Front for the MDFA of example 2, Parallel execution of processes

were visited, their solution dominated at least one solution of an element in Qφ. Qφ contains
all the states with non-dominated solutions. Due to this, it can be inferred that the elements
of Q∗ are contained in Qφ, for this reason is true that:

Qφ = Qφ ∪Q∗ (16)

Lastly, the template algorithm of MODS is defined as follows:

Step 1. Create the initial set of solutions Q0 using a heuristic relative to the problem to solve.

Step 2. Set Qφ as Q0 and Q∗ as φ.

Step 3. Select a random state q ∈ Qφ or q ∈ Q∗
Step 4. Explore the neighborhood of q using δ and Σ. Add to Qφ the solutions found that
are not dominated by elements of Q f . In addition, add to Q∗ those solutions found that
dominated at least one element from Qφ.

Step 5. Check stop condition, go to 3.

3. Simulated Annealing Metaheuristic Of Deterministic Swapping (SAMODS)

Simulated Annealing & Metaheuristic Of Deterministic Swapping(Niño, 2012) (SAMODS) is a
hybrid local search strategy based on the MODS theory and Simulated Annealing Algorithm
for the Multiobjective Optimization of combinatorial problems. Its main propose consists in
optimizing a combinatorial problem using a Search Direction and an Angle Improvement.
SAMODS is based in the next Automata:

M = (Q, Q0, P(q), F(X), A(n)) (17)

Alike MODS, Q0 is the set of initial solutions, Q is the feasible solution space and F(X) are the
functions of the combinatorial problem. P(q) and A(n) are defined as follows:

P(q) is the Permutation Function, formally it is defined as follows:

P(q) : Q → Q (18)

P receives a solution q ∈ Q and perturbs it returning a new solution ri ∈ Q. The perturbation
can be done based on the representation of the solutions. An example of some perturbations
based on the representation of the solution can be seen in figure 15.
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Fig. 9. Different representation and perturbation of solutions.

A(n) is the Weight Function. Formally, it is defined as follow:

A(n) : N → 
n (19)

Where n is the number of objectives of the problem.

Function A receives a natural number as parameter and it returns a vector with the weights.
The weight values are randomly generated with an uniform distribution. Those represent the
weight to assign to each function of the combinatorial problem. The weight values returned
by the function fulfill the next constrain:

n

∑
i=1

αi = 1, 0 ≤ αi ≤ 1 (20)

Where αi is the weight assigned to function i. Table 5 shows some vectors randomly generated
by A(n).

Input Parameter Function Vector of Weights
2 A(2) {0.6, 0.4}
3 A(3) {0.2, 0.4, 0.4}
4 A(4) {0.3, 0.8, 0.1, 0.0}

Table 5. Some weight vectors generated by A(n)

But, what is the importance of those weights? The weights, in an implicit manner, allow
setting the angle direction to the solutions. The angle direction is the course being followed
by the solutions for optimizing F(X). Hence, when the weights values are changed, the angle of
optimization is changed and a new search direction is obtained. For instance, different search
directions for different weight values are shown in figure 16 in a Bi-objective combinatorial
problem. Due to this, (6) is rewritten as follows:

F(X) =
n

∑
i=1

αi · fi(X) (21)

Where n is the number of objectives of the problem and αi is the weight assigned to the
function i. The weights fulfills the constrain established in (20).

SAMODS main idea is simple: it takes advantage of the search directions given by MODS
and it proposed an angle direction given by the function A(n). Thus, there are two directions;
the first helps in the convergence of the Pareto Front and the second helps the solutions to
find neighborhoods where F(X) is optimized. Due to this, SAMODS template is defined as
follows:

Step 1. Setting sets. Set Q0 as the set of Initial Solutions. Set Qφ and Q∗ as Q0.
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Fig. 10. Different angles given by different weights for a Bi-objective Problem.

Step 2. Settings parameters. Set T as the initial temperature, n as the number of objectives of
the problem and ρ as the cooler factor.

Step 3. Setting Angle. If T is equal to 0 then got to 8, else set Ti+1 = ρ× Ti, randomly select
s ∈ Qφ, set W = A(n) = {w1, w2, · · · , wn} and go to step 4.

Step 4. Perturbing Solutions. Set s
′
= P(s), add to Qφ and Q∗ according to the next rules:

Qφ = Qφ ∪
{

s
′}⇔ ( � ∃r ∈ Qφ)(r dominated to s

′
) (22)

Q∗ = Q∗ ∪
{

s
′}⇔ (∃r ∈ Q∗)(s

′
dominated to r) (23)

If Qφ has at least one element that dominated to s
′

go to step 5, otherwise go to step 7.

Step 5. Guess with dominated solutions. Randomly generated a number n ∈ [0, 1]. Set z as
follows:

z = e(−(γ/Ti)) (24)

Where Ti is the temperature value in moment i and γ is defined as follows:

γ =
n

∑
i=1

wi · fi(sX)−
n

∑
i=1

wi · fi(s
′
X) (25)

Where sX is the vector X of solution s, s
′
X is the vector X of solution s

′
, wi is the weight

assigned to the function i and n is the number of objectives of the problem. If n < z then set s
as s

′
and go to step 4 else go to step 6.

Step 6. Change the search direction. Randomly select a solution s ∈ Q∗ and go to step 4.

Step 7. Removing dominated solutions. Remove the dominated solution for each set (Q∗ and
Qφ). Go to step 3.

Step 8. Finishing. Qφ has the non-dominated solutions.

As can be seen in figure 11, alike MODS, SAMODS removes the dominated solutions when
the new solution found is not dominated. Besides, if the new solution found dominated
at least one element from the solution set (Qφ) then it will be added to the elitisms set
(Q∗) that works as a search direction for the Pareto Front. As far as here, SAMODS could
sounds as a simple local search strategy but not, when a new solution found is dominated,
SAMODS tries to improve it using guessing. Guessing is done accepting dominated solution
as good solutions. Alike Simulated Annealing inspired algorithms, the dominated solutions
are accepted under the Boltzmann Distribution Probability assigning weights to the objectives
of the problem. It is probably that perturbing a dominated solution, a non-dominated solution
can be found as can be seen in figure 12. Due to this, local optimums are avoided. When the
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temperature is low, the bad solutions are avoided because z value is low therefore SAMODS
accepts only non-dominated solutions. However, by that time, Qφ will be leaded on by Q∗.

Fig. 11. Behavior of SAMODS when the new solution found is not dominated. Once a new
solution found is non-dominated, it is added to the elitism set Q∗ and the dominated
solutions from Qφ are removed.

Fig. 12. Behavior of SAMODS when the new solution found is dominated. In this case,
guessing gives a new solution non-dominated.

4. Genetic Simulated Annealing Metaheuristic Of Deterministic Swapping
(SAGAMODS)

Simulated Annealing, Genetic Algorithm & Metaheuristic Of Deterministic Swapping(Niño,
2012) (SAGAMODS) is a hybrid search strategy based on the Automata Theory, Simulated
Annealing and Genetics Algorithms. SAGAMODS is an extension of the SAMODS theory.
It comes up as result of the next question: could SAMODS avoid quickly local optimums?
Although, SAMODS avoids local optimums guessing, it can take a lot of time accepting
dominated solutions for finding non-dominated. Thus, the answer to this question is based
on the Evolutionary Theory. SAGAMODS proposes crossover step before SAMODS template
is executed. Due to this, SAGAMODS supports to SAMODS for exploring distant regions of
the solution space.

Formally, SAGAMODS is based on the next automata:

M = (Q, QS, C(q, r, k), F(X)) (26)
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Where Q is the feasible solutions space, QS is the initial solutions and F(X) are the objectives
of the problem. C(q, r, k) is defined as follows:

Formally, Cross Function K is defined as follows:

C(q, r, k) : Q → Q (27)

Where q, r ∈ Q and k ∈ N. q and r are named parents solutions and k is the cross point. The
main idea of this function is cross two solutions in the same point and returns a new solution.
For instance, two solutions of 4 variables are cross in figure 13. Obviously, the crossover is
made regarding the representation of the solutions. Lastly, SAGAMODS template is defined

Fig. 13. Crossover between two solutions. Solutions of the states qk and qj are crossed in
order to get state qi

as follows:

Step 1. Setting parameters. Set QS as the solution set, x as the number of solutions to cross for
each iteration.

Step 2. Selection. Set QC (crossover set) as selection of x solutions in QS, QM (mutation set) as
φ and k as a random value.

Step 3. Crossover. For each si, si+1 ∈ QC/1 ≤ i < |QC|:
QM = QM ∪ {C(si, si+1, k)} (28)

Step 4. Mutation. Set Q0 as QM. Execute SAMODS as a local search strategy.

Step 5. Check stop conditions. Go to 2.

5. Evolutionary Metaheuristic Of Deterministic Swapping (EMODS)

Evolutionary Metaheuristic of Deterministic Swapping (EMODS), is a novel framework that
allows the Multiobjective Optimization of Combinatorial Problems. Its framework is based on
MODS template therefore its steps are the same: create Initial Solutions, Improve the Solutions
(Optional) and Execute the Core Algorithm. Unlike SAMODS and SAGAMODS, EMODS
avoids the slowly convergence of Simulated Annealing’s method. EMODS explores different
regions from the feasible solution space and search for non-dominated solution using Tabu
Search.

The Core Algorithm is defined as follows:
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Step 1. Set θ as the maximum number of iterations, β as the maximum number of state selected
in each iteration, ρ as the maximum number of perturbations by state and Qφ as Q0

Step 2. Selection. Randomly select a state q ∈ Qφ or q ∈ Q∗
Step 3. Mutation - Tabu Search. Set N as the new solutions found as result of perturbing q. Add
to Qφ and Q∗ according to the next equations:(

Qφ = Qφ ∪ {q})⇐⇒ ( � ∃r ∈ Qφ/q is dominated by r
)

(29)

(Q∗ = Q∗ ∪ {q})⇐⇒ (∃r ∈ Qφ/r is dominated by q
)

(30)

Remove the states with dominated solutions for each set.

Step 4. Crossover. Randomly select states from Qφ and Q∗. Generate a random point of cross.

Step 5. Check stop condition, go to 3.

Step 2 and 3 support the algorithm in removing dominated solutions from the set of solutions
Qφ as can be seen in figure 3. However, one of the most important steps in the EMODS
algorithm is step 4. There, similar to SAGAMODS, the algorithm applies an Evolutionary
Strategy based in the crossover step of Genetic Algorithms for avoiding Local Optimums.
Due to the crossover is not always made in the same point (the k-value is randomly generated
in each state analyzed) the variety of solutions found are diverse avoiding local optimums. An
overview of EMODS behavior for a Tri-objective Combinatorial Optimization problem can be
seen in figure 14

6. Experimental analysis

6.1 Experimental settings

The algorithms were tested using well-known instances from the Multi-objective Traveling
Salesman Problem taken from TSPLIB(Heidelberg, n.d.). The instances worked are shown in
table 6 and the input parameters for the algorithms are shown in table 7. The test of the
algorithms was made using a Dual Core Computer with 2 Gb RAM. The optimal solutions
were constructed based in the best non-dominated solutions of all algorithms in comparison
for each instance worked.

6.2 Performance metrics

There are metrics that allow measuring the quality of a set of optimal solutions and the
performance of an Algorithm (Corne & Knowles, 2003). Most of them use two Pareto Fronts.
The first one is PFtrue and it refers to the real optimal solutions of a combinatorial problem.
The second is PFknow and it represents the optimal solutions found by an algorithm.

Generation of Non-dominated Vectors (GNDV) It measures the number of No Dominates
Solutions generated by an algorithm.

GNDV = |PFknow| (31)

A higher value for this metric is desired. Rate of Generation of No-dominated Vectors (RGNDV)
This metric measures the proportion of the No Dominates Solutions (31) generated by an
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Fig. 14. An overview of EMODS behavior for a Tri-objective Problem.

algorithm and the Real Solutions.

RGNDV =

(
GNDV
|PFtrue|

)
· 100% (32)

A value closer to 100% for this metric is desired. Real Generation of Non-dominated Vectors
(ReGNDV) This metric measures the number of Real Solutions found by an algorithm.

ReGNDV = |{y|y ∈ PFknow ∧ y ∈ PFtrue}| (33)
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Combinatorial Problem Instance Number of Objectives
KROAB100

2

KROAC100
KROAD100
KROAE100
KROBC100
KROBD100
KROBE100
KROCD100
KROCE100
KRODE100
KROABC100

3

KROABD100
KROABE100
KROACD100
KROACE100
KROADE100
KROBCD100
KROBCE100
KROBDE100
KROCDE100

KROABCD100

4
KROABCE100
KROABDE100
KROACDE100
KROBCDE100

KROABCDE100 5

Table 6. Instances worked for testing the proposed algorithms.

Algorithm Max. Iterations Max. Perturbations Initial Temperature Cooler Value Crossover Rate

MODS 100 80 NA NA NA
SAMODS 100 80 1000 0.95 NA

SAGAMODS 100 80 1000 0.95 0.6
EMODS 100 80 NA NA 0.6

Table 7. Parameters setting for each compared algorithm.

A value closer to |PFtrue| for this metric is desired.

Generational Distance (GD) This metric measures the distance between PFknow and PFtrue. It
allows to determinate the error rate in terms of the distance of a set of solutions relative to the
real solutions.

GD =

(
1

|PFknow|
)
·
(|PFknow|

∑
i=1

di

)(1/p)

(34)
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Where di is the smallest Euclidean distance between the solution i of FPknow and the solutions
of FPtrue. p is the dimension of the combinatorial problem, it means the number of objective
functions. Inverse Generational Distance (IGD) This is another distance measurement between
FPknow and FPtrue:

IGD =

(
1

|PFtrue|
)
·
(|PFknow|

∑
i=1

di

)
(35)

Where di is the smallest Euclidean distance between the solution i of PFknow and the solutions
of PFtrue. Spacing (S) It measures the range variance of neighboring solutions in PFknow

S =

(
1

|PFknow| − 1

)2
·
(|PFknow|

∑
i=1

(
d− di

)2
)(1/p)

(36)

Where di is the smallest Euclidean distance between the solution i of PFknow and the rest of
solutions of PFknow. d is the mean of all di. p is the dimension of the combinatorial problem.

A value closer to 0 for this metric is desired. A value of 0 means that all the solutions are
equidistant.

Error Rate (ε) It estimates the error rate respect to the precision of the Real Algorithms Solutions
(33) as follows:

ε =

(∣∣∣∣ PFtrue

ReGNDV

∣∣∣∣
)
· 100% (37)

A value of 0% in this metric means that the values of the Real Pareto Front are constructed
from the values of the Algorithm Pareto Front.

Lastly, notice that every metric by itself does not have sense. It is necessary to support in
the other metrics for a real judge about the quality of the solutions. For instance, if a Pareto
Front has a higher value in GNDV but a lower value in ReGNDV then the solutions has a
poor-quality.

6.3 Experimental results

The tests made with Bi-objectives, Tri-objectives, Quad-objectives and Quin-objectives TSP
instances are shown in tables 8, 9, 10 and 11 respectively. The average of the measurement
is shown in table 12. Furthermore, a graphical comparison for bi-objectives and tri objectives
instances worked is shown in figures 15 and 16 respectively.

6.4 Analysis

It can be concluded, that, in the case of two and three objectives, metrics such as S, IGD,
GD and ε determine the best algorithm. In this case, the measurement of the metrics is
similar for SAMODS and SAGAMODS. On the other hand, MODS has the most poor-quality
measurement for the metrics used and EMODS has the best quality measurement for the same
metrics.

Lastly, why are the results of the metrics similar for quint-instances? In this case, all the
solutions for each solution set are in the optimal set. The answer to this question is based in
the angle improvement. MODS as a local search strategy explore a part of the feasible solution
using its search direction (Q∗). However, SAMODS and SAGAMODS, in addition, use a
search direction given by the change of the search angle. While SAMODS was looking in a
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Fig. 15. Graphical comparison between MODS, SAMODS, SAGAMODS and EMODS for
Bi-objective TSP instances.

Fig. 16. Graphical comparison between MODS, SAMODS, SAGAMODS and EMODS for
Tri-objective TSP instances.

part of the feasible solution space, SAGAMODS was doing the same in other. The same reason
applies to EMODS. It can be possible because of the large size of the feasible solution space
(
5). The possibility of exploring the same part of the solution space for different algorithms
is low.
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Instance Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)
% S GD IGD ε

AB

MODS 289 0.0189 0 0% 0.0193 21.2731 2473.4576 100%
SAMODS 7787 0.5096 1247 16.01% 0.001 0.2404 229.2593 91.84%
SAGAMODS 8479 0.5549 2974 35.07% 0.0007 0.1837 158.8229 80.54%
EMODS 26125 1.7096 11060 42.33% 0.0002 0.0412 75.8814 27.62%

AC

MODS 217 0.0155 0 0% 0.034 28.575 2751.3232 100%
SAMODS 6885 0.4927 2303 33.45% 0.0008 0.2297 179.0354 83.52%
SAGAMODS 7023 0.5025 2431 34.61% 0.0008 0.2628 243.7536 82.6%
EMODS 20990 1.502 9241 44.03% 0.0002 0.0617 119.8825 33.87%

AD

MODS 281 0.0187 0 0% 0.0139 20.4429 2198.883 100%
SAMODS 6383 0.4253 1464 22.94% 0.0029 0.3188 275.9153 90.24%
SAGAMODS 6289 0.4191 764 12.15% 0.0016 0.2835 211.7935 94.91%
EMODS 17195 1.1458 12779 74.32% 0.0005 0.0521 53.5314 14.85%

AE

MODS 283 0.0189 0 0% 0.0533 21.3238 2433.63 100%
SAMODS 5693 0.3804 1433 25.17% 0.0016 0.4308 402.0483 90.42%
SAGAMODS 6440 0.4304 1515 23.52% 0.0013 0.3906 422.7859 89.88%
EMODS 20695 1.383 12016 58.06% 0.0002 0.066 124.7197 19.7%

BC

MODS 298 0.0212 0 0% 0.0158 19.537 2411.8365 100%
SAMODS 6858 0.488 789 11.5% 0.0024 0.3597 433.0882 94.39%
SAGAMODS 6919 0.4923 2201 31.81% 0.0015 0.2378 192.5601 84.34%
EMODS 21902 1.5584 11064 50.52% 0.0003 0.0582 115.5673 21.28%

BD

MODS 241 0.0198 0 0% 0.0239 21.7441 2251.0972 100%
SAMODS 6844 0.561 2054 30.01% 0.0021 0.2542 248.0971 83.16%
SAGAMODS 5934 0.4864 1971 33.22% 0.0018 0.2818 229.2093 83.84%
EMODS 19420 1.5919 8174 42.09% 0.0003 0.0432 57.6434 32.99%

BE

MODS 280 0.0259 0 0% 0.0309 19.0193 2622.5243 100%
SAMODS 6260 0.5789 952 15.21% 0.001 0.2601 245.1433 91.2%
SAGAMODS 5802 0.5365 1622 27.96% 0.0025 0.3912 476.4848 85%
EMODS 17362 1.6055 8240 47.46% 0.0004 0.0631 111.0209 23.8%

CD

MODS 286 0.022 0 0% 0.0184 18.0035 2040.9722 100%
SAMODS 6171 0.4751 1912 30.98% 0.0007 0.2588 196.3394 85.28%
SAGAMODS 6301 0.4851 994 15.78% 0.0014 0.2852 248.5855 92.35%
EMODS 18628 1.434 10084 54.13% 0.0002 0.0426 48.3785 22.37%

CE

MODS 224 0.0187 0 0% 0.0285 23.1312 2245.6542 100%
SAMODS 5881 0.4919 946 16.09% 0.0017 0.2894 242.2535 92.09%
SAGAMODS 4613 0.3859 939 20.36% 0.0028 0.481 411.854 92.15%
EMODS 15211 1.2724 10070 66.2% 0.0003 0.0339 22.2645 15.77%

DE

MODS 228 0.0147 0 0% 0.0477 23.6222 1864.9602 100%
SAMODS 6110 0.3928 1157 18.94% 0.0022 0.2942 207.7947 92.56%
SAGAMODS 7745 0.4979 407 5.26% 0.0012 0.2644 269.6204 97.38%
EMODS 20058 1.2896 13990 69.75% 0.0005 0.0304 23.8829 10.06%

Table 8. Measuring algorithms performance for Bi-objectives instances of Traveling Salesman
Problem with Multi-objective optimization metrics.
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Instance Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)
% S GD IGD ε

ABC

MODS 2115 0.0307 83 3.92% 0.1567 0.2819 3075.4309 99.88%
SAMODS 12768 0.1853 227 1.78% 0.0722 0.0421 2256.4593 99.67%
SAGAMODS 12523 0.1818 328 2.62% 0.073 0.0427 2220.5614 99.52%
EMODS 70474 1.023 68254 96.85% 0.0477 0.001 5.6388 0.93%

ABD

MODS 1951 0.0292 74 3.79% 0.1524 0.305 3153.9212 99.89%
SAMODS 12094 0.1811 317 2.62% 0.0746 0.0441 2270.3475 99.53%
SAGAMODS 12132 0.1817 250 2.06% 0.0726 0.0441 2286.7374 99.63%
EMODS 68001 1.0184 66133 97.25% 0.0471 0.0011 6.3212 0.96%

ABE

MODS 1931 0.0281 63 3.26% 0.1496 0.315 3278.1554 99.91%
SAMODS 12461 0.1815 373 2.99% 0.0743 0.0438 2371.7641 99.46%
SAGAMODS 12391 0.1805 370 2.99% 0.0745 0.0436 2304.3277 99.46%
EMODS 70411 1.0257 67839 96.35% 0.0474 0.0012 8.0639 1.17%

ACD

MODS 2031 0.0305 66 3.25% 0.1425 0.2945 3213.7378 99.9%
SAMODS 12004 0.1802 241 2.01% 0.0734 0.0444 2277.0343 99.64%
SAGAMODS 12123 0.182 206 1.7% 0.0735 0.0442 2310.3683 99.69%
EMODS 67451 1.0127 66090 97.98% 0.0468 0.001 4.5012 0.77%

ACE

MODS 1950 0.0306 57 2.92% 0.1628 0.3024 3215.8357 99.91%
SAMODS 11382 0.1785 263 2.31% 0.074 0.0461 2271.6542 99.59%
SAGAMODS 11476 0.18 303 2.64% 0.0734 0.0456 2241.9933 99.52%
EMODS 64804 1.0162 63145 97.44% 0.048 0.0012 7.3103 0.98%

ADE

MODS 1824 0.0274 67 3.67% 0.1487 0.3289 3248.597 99.9%
SAMODS 12149 0.1827 179 1.47% 0.0733 0.0442 2336.2798 99.73%
SAGAMODS 11773 0.1771 258 2.19% 0.0771 0.0457 2346.6414 99.61%
EMODS 67767 1.0193 65981 97.36% 0.0468 0.0011 5.7824 0.76%

BCD

MODS 2065 0.03 43 2.08% 0.1451 0.2927 3206.9305 99.94%
SAMODS 13129 0.1908 260 1.98% 0.0712 0.0417 2387.8219 99.62%
SAGAMODS 12889 0.1873 253 1.96% 0.0786 0.042 2308.1811 99.63%
EMODS 70035 1.0176 68270 97.48% 0.0452 0.001 5.6235 0.81%

BCE

MODS 2009 0.0286 58 2.89% 0.1505 0.3065 3327.787 99.92%
SAMODS 12992 0.1852 229 1.76% 0.0701 0.0428 2448.3577 99.67%
SAGAMODS 12582 0.1794 201 1.6% 0.0736 0.0445 2503.0421 99.71%
EMODS 71176 1.0147 69654 97.86% 0.0464 0.0011 7.8122 0.7%

BDE

MODS 2039 0.0316 45 2.21% 0.1532 0.2914 3252.7813 99.93%
SAMODS 12379 0.192 205 1.66% 0.0728 0.0434 2401.8804 99.68%
SAGAMODS 12427 0.1928 195 1.57% 0.0742 0.0431 2377.0621 99.7%
EMODS 65509 1.0163 64015 97.72% 0.0476 0.0011 5.6322 0.69%

CDE

MODS 2010 0.0278 83 4.13% 0.1463 0.3022 3094.2824 99.89%
SAMODS 13084 0.1807 399 3.05% 0.0712 0.0414 2193.6586 99.45%
SAGAMODS 13009 0.1796 347 2.67% 0.0719 0.0418 2224.4738 99.52%
EMODS 74063 1.0227 71589 96.66% 0.0453 0.0011 7.2279 1.14%

Table 9. Measuring algorithms performance for Tri-objective instances of TSP with
Multi-objective optimization metrics.
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Instance Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)
% S GD IGD ε

ABCD

MODS 5333 0.0925 3303 61.94% 0.3497 0.0256 6030.5288 94.27%
SAMODS 28523 0.4947 12178 42.7% 0.231 0.0042 3454.1238 78.88%
SAGAMODS 36802 0.6382 14967 40.67% 0.2203 0.0031 3092.5232 74.04%
EMODS 201934 3.502 27214 13.48% 0.1754 0.0005 1991.148 52.8%

ABCE

MODS 5533 0.0973 3439 62.15% 0.3452 0.0244 5861.8605 93.95%
SAMODS 27684 0.4868 11471 41.44% 0.2331 0.0043 3444.6454 79.83%
SAGAMODS 35766 0.6289 14552 40.69% 0.2232 0.0032 3118.6397 74.41%
EMODS 204596 3.5976 27408 13.4% 0.1754 0.0005 1885.4464 51.81%

ABDE

MODS 5259 0.0942 3142 59.75% 0.3487 0.0256 5864.5036 94.37%
SAMODS 27180 0.4869 11247 41.38% 0.232 0.0043 3398.9429 79.85%
SAGAMODS 34930 0.6257 14472 41.43% 0.2236 0.0033 2986.5319 74.08%
EMODS 195756 3.5067 26963 13.77% 0.1775 0.0005 1916.7141 51.7%

ACDE

MODS 5466 0.094 3400 62.2% 0.3405 0.0246 5617.5202 94.15%
SAMODS 26757 0.4602 11336 42.37% 0.235 0.0044 3394.8396 80.5%
SAGAMODS 34492 0.5932 14638 42.44% 0.2265 0.0033 2965.4482 74.83%
EMODS 196800 3.3845 28774 14.62% 0.1764 0.0005 1793.4489 50.52%

BCDE

MODS 5233 0.0879 3082 58.9% 0.3499 0.0259 5677.9988 94.83%
SAMODS 28054 0.471 11739 41.84% 0.2315 0.0042 3296.196 80.29%
SAGAMODS 36258 0.6087 15145 41.77% 0.2218 0.0032 2902.8041 74.57%
EMODS 203017 3.4083 29599 14.58% 0.1752 0.0005 1873.1748 50.31%

Table 10. Measuring algorithms performance for Quad-objectives instances of TSP with
Multi-objective optimization metrics.

Instance Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)
% S GD IGD ε

ABCDE

MODS 7517 0.0159 7517 100% 0.5728 0.0125 15705.6864 98.41%
SAMODS 26140 0.0554 26140 100% 0.4101 0.0033 10801.6382 94.46%
SAGAMODS 26611 0.0564 26611 100% 0.4097 0.0033 10544.8901 94.36%
EMODS 411822 0.8723 411822 100% 0.3136 0.0001 950.4252 12.77%

Table 11. Measuring algorithms performance for Quint-objectives instances of TSP with
Multi-objective optimization metrics.
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Objectives Algorithm GNDV RGNDV ReGNDV
(

ReGNDV
GNDV

)
% S GD IGD ε

2

MODS 262.7 0.0194 0 0% 0.0286 21.6672 2329.4338 100%

SAMODS 6487.2 0.4796 1425.7 22.03% 0.0016 0.2936 265.8974 89.47%

SAGAMODS 6554.5 0.4791 1581.8 23.97% 0.0015 0.3062 286.547 88.3%

EMODS 19758.6 1.4492 10671.8 54.89% 0.0003 0.0492 75.2773 22.23%

3

MODS 1992.5 0.0295 63.9 3.21% 0.1508 0.302 3206.7459 99.91%

SAMODS 12444.2 0.1838 269.3 2.16% 0.0727 0.0434 2321.5258 99.6%

SAGAMODS 12332.5 0.1822 271.1 2.2% 0.0743 0.0437 2312.3389 99.6%

EMODS 68969.1 1.0187 67097 97.3% 0.0468 0.0011 6.3914 0.89%

4

MODS 5364.8 0.0932 3273.2 60.99% 0.3468 0.0252 5810.4824 94.31%

SAMODS 27639.6 0.4799 11594.2 41.94% 0.2325 0.0043 3397.7495 79.87%

SAGAMODS 35649.6 0.619 14754.8 41.4% 0.2231 0.0032 3013.1894 74.39%

EMODS 200420.6 3.4798 27991.6 13.97% 0.176 0.0005 1891.9864 51.43%

5

MODS 7517 0.0159 7517 100% 0.5728 0.0125 15705.6864 98.41%

SAMODS 26140 0.0554 26140 100% 0.4101 0.0033 10801.6382 94.46%

SAGAMODS 26611 0.0564 26611 100% 0.4097 0.0033 10544.8901 94.36%

EMODS 411822 0.8723 411822 100% 0.3136 0.0001 950.4252 12.77%

Table 12. Measuring algorithms performance for Multi-objectives instances of TSP with
Multi-objective optimization metrics.

7. Conclusion

SAMODS, SAGAMODS and EMODS are algorithms based on the Automata Theory for the
Multi-objective Optimization of Combinatorial Problems. All of them are derived from the
MODS metaheuristic, which is inspired in the Theory of Deterministic Finite Swapping.
SAMODS is a Simulated Annealing inspired Algorithm. It uses a search direction in order
to optimize a set of solution (Pareto Front) through a linear combination of the objective
functions. On the other hand, SAGAMODS, in addition to the advantages of SAMODS, is
an Evolutionary inspired Algorithm. It implements a crossover step for exploring far regions
of a solution space. Due to this, SAGAMODS tries to avoid local optimums owing to it takes
a general look of the solution space. Lastly, in order to avoid slow convergence, EMODS is
proposed. Unlike SAMODS and SAGAMODS, EMODS does not explore the neighborhood of
a solution using Simulated Annealing, this step is done using Tabu Search. Thus, EMODS gets
optimal solution faster than SAGAMODS and SAMODS. Lastly, the algorithms were tested
using well known instances from TSPLIB and metrics from the specialized literature. The
results shows that for instances of two, three and four objectives, the proposed algorithm
has the best performance as the metrics values corroborate. For the last instance worked,
quint-objective, the behavior of MODS, SAMODS and SAGAMODS tend to be the same, them
have similar error rate but, EMODS has a the best performance. In all the cases, EMODS shows
the best performance. However, for the last test, all the algorithms have different solutions sets
of non-dominated solutions, and those form the optimal solution set.
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1. Introduction  

To schedule production in a Job-Shop environment means to allocate adequately the 
available resources. It requires to rely on efficient optimization procedures. In fact, the Job-
Shop Scheduling Problem (JSSP) is a NP-Hard problem (Ullman, 1975), so ad-hoc 
algorithms have to be applied to its solution (Frutos et al., 2010). This is similar to other 
combinatorial programming problems (Olivera et al., 2006), (Cortés et al., 2004). Most 
instances of the Job-Shop Scheduling Problem involve the simultaneous optimization of two 
usually conflicting goals. This one, like most multi-objective problems, tends to have many 
solutions. The Pareto frontier reached by an optimization procedure has to contain a 
uniformly distributed number of solutions close to the ones in the true Pareto frontier. This 
feature facilitates the task of the expert who interprets the solutions (Kacem et al., 2002). In 
this paper we present a Genetic Algorithm linked to a Simulated Annealing procedure able 
to schedule the production in a Job-Shop manufacturing system (Cortés et al., 2004), (Tsai & 
Lin, 2003), (Wu et al., 2004), (Chao-Hsien & Han-Chiang, 2009).  

1.1 JSSP treatments: State of the art 

The huge literature on the topic presents a variety of solution strategies that go from simple 
priority rules to sophisticated parallel branch-and-bound algorithms. A particular variety of 
scheduling problem is the JSSP. Muth and Thompson’s 1964 (Muth & Thompson, 1964) 
book Industrial Scheduling presented the JSSP, basically in its currently known form. Even 
before, Jackson in 1956 (Jackson, 1956) generalized the flow-shop algorithm of Johnson 
(1954) (Johnson, 1954) to yield a job-shop algorithm. In 1955, Akers and Friedman (Akers & 
Friedman, 1955) gave a Boolean representation of the procedure, which later Roy and 
Sussman (1964) (Roy & Sussman, 1964) described by means of a disjunctive graph, while 
Egon Balas, already in 1969 (Balas, 1969), applied an enumerative approach that could be 
better understood in terms of this graph. Giffler and Thompson (1960) (Giffler & Thomson, 
1960) presented an algorithm based on rule priorities to guide the search. For these reasons, 
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the problem was already part of the folklore in Operations Research years before its official 
inception. The JSSP generated a huge literature. Its resiliency made it an ideal problem for 
further study. Besides, its usefulness made it a problem worth to scrutinize. Due to its 
complexity, several alternative presentations of the problem have been tried (Cheng & 
Smith, 1997), (Sadeh & Fox, 1995), (Crawford & Baker, 1994), (De Giovanni & Pezzella, 
2010), in order to apply particular algorithms like Clonal Selection (Cortés Rivera et al., 
2003), Taboo Search (Armentano & Scrich, 2000), Ant Colony Optimization (Merkle & 
Middendorf, 2001), Genetic Algorithms (Zalzala & Flemming, 1997), Priority Rules (Panwalker 
& Iskander, 1977), Shifting Bottlenecks (Adams et al., 1998), etc. The performance of these 
meta-heuristic procedures varies, and some seem fitter than others (Chinyao & Yuling, 2009). 

1.2 Multi-objective optimization: Basic concepts 

Our goal in this section is to characterize the general framework in which we will state the Job-
Shop problem. We assume, without loss of generality, that there are several goals (objectives) 
to be minimized. Then, we seek to find a vector * * *

1[ ,..., ]Tnx x x=  of decision variables, 
satisfying q inequalities ( ) 0,  1,...,ig x i q≥ =  as well as p equations ( ) 0,  1,...,ih x i p= = , such 
that 1( ) [ ( ),..., ( )]Tkf x f x f x=

    , a vector of k functions, each one corresponding to an objective, 
defined over the decision variables, attains its minimum. The class of the decision vectors 
satisfying the q inequalities and the p equations is denoted by Ω  and each x ∈Ω  is a feasible 
alternative. A *x ∈ Ω  is Pareto optimal if for any x ∈Ω  and every 1,...,i k= , *( ) ( )i if x f x≤  . 
That is, if there is no x

  that improves some objectives without worsening the others. To 
simplify the notation, we say that a vector 1[ ,..., ]Tnu u u=  dominates another, 1[ ,..., ]Tnv v v=  
(denoted u v

  ) if and only if {1,..., }i k∀ ∈ , {1,..., } :i i i iu v i k u v≤ ∧ ∃ ∈ < . Then, the set of 
Pareto optima is * ' '{    ,  ( ) ( )}P x x f x f x= ∈ Ω ¬ ∃ ∈Ω

      while the corresponding Pareto frontier 
is * *{ ( ), }FP f x x P= ∈

   . The search of the Pareto frontier is the main goal of Multi-Objective 
Optimization. 

2. Flexible job-shop scheduling problem 

The JSSP can be described as that of organizing the execution of n jobs on m machines. We 
assume a finite number of tasks, 1{ }n

j jJ = . These tasks must be processed by a finite number 
of machines 1{ }m

k kM = . To process a task jJ  in a machine kM  is denoted by i
jkO , where i 

indicates the order in which a class of operations 1{ }n
j jS =  is applied on a task jJ . i

jkO  
requires the uninterrupted use of a machine kM  for a period i

jkτ  (the processing time) at a 
cost i

jkυ  (see Table 1). A particular case is Flexible JSSP, in which the allocation of i
jkO  on 

kM  is undifferentiated, which means that each i
jkO  can be processed by any of the 

machines in 1{ }m
k kM = .  

After allocating the operations, we obtain a finite class E of groupings of the i
jkO s  on the same 

machine. We denote each of these groupings as kE , for 1,...,k m= . A key issue here is the 
scheduling of activities, i.e. the determination of the starting time i

jkt  of each i
jkO . The Flexible 

JSSP demands a procedure to handle its two sub-problems: the allocation of the i
jkO s  on the 

different kM s  and their sequencing, guided by the goals to reach. That is, to find optimal 
levels of Makespan (Processing Time) (see Eq. 1) and Total Operation Costs (see Eq. 2). 
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MF01 / Problem 3 × 4 with 8 operations (flexible) 

jJ  
i
jkO  

1M  2M  3M  4M  

1
i
jτ  1

i
jυ  2

i
jτ  2

i
jυ  3

i
jτ  3

i
jυ  4

i
jτ  4

i
jυ  

1J  

1
1kO  1 10 3 8 4 6 1 9 
2
1kO  3 4 8 2 2 10 1 12 
3
1kO  3 8 5 4 4 6 7 3 

2J  

1
2kO  4 7 1 16 1 14 4 6 
2
2kO  2 10 3 8 9 3 3 8 
3
2kO  9 3 1 15 2 10 2 13 

3J  

1
3kO  8 6 6 8 3 12 5 10 
2
3kO  4 11 5 8 8 6 1 18 

Table 1. Flexible Job-Shop Scheduling Problem 

 max
( )

1 :   max( )j k k
ij ij

k Mi O j

f C t τ
∈∈

= +  (1) 

 2 : i i
jk jkj i k

f x υ    (2) 

Where i
jkx = 1 if i

jk kO E∈  and 0 otherwise. On the other hand 1i
jkk

x = . Besides, 
( 1) ( 1) ( ,  ,  0)i ii s s

jk pk pkjh jht max t tτ τ− −= + +  for each pair 1i
jhO − , s

pk kO E∈  and all machines kM , hM  
and operations iS , sS . 

3. Hybrid genetic algorithm 

Due to its many advantages, evolutionary algorithms have become very popular for solving 
multi-objective optimization problems (Ztzler et al., 2001), (Coello Coello et al., 2002). 
Among the evolutionary algorithms used, some of the most interesting are Genetic 
Algorithms (GA) (Goldberg, 1989). To represent the individuals, we use a variant of (Wu et 
al., 2004). Since the Flexible JSSP has two subproblems, the Hybrid Genetic Algorithm 
(HGA) presented here operates over two chromosomes. The first one represents the 
allocation i

jkA  of each i
jkO  to every kM . We denote with values between 0 and (m - 1) the 

allocation of each kM , that is, for m = 4, we might have something like 0→M1, 1→M2, 2→M3 
and 3→M4. The second chromosome represents the sequencing of the i

jkO  already assigned 
to each of the ( )i

k jk kM O E∀ ∈ . We denote with values between 0 and (n! - 1) the sequence of 
jJ  in each  kM . That is, for n = 3, we may have 0→J1J2J3, 1→J1J3J2, 2→J2J1J3, 3→J2J3J1, 4→J3J1J2 

and 5→J3J2J1 (see Table 2). 

The algorithm NSGAII (Non-Dominated Sorting Genetic Algorithm II) (Deb et al., 2002), 
creates an initial population, be it random or otherwise. NSGAII uses an elitist strategy joint 
with an explicit diversity mechanism. Each individual candidate solution i is assumed to 
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have an associated rank of non-dominance ir  and a distance id  which indicates the radius 
of the area in the search space around i not occupied by another solution (see Eq. 3). A 
solution i is preferred over j if i jr r< . When i and j have the same rank, i is preferred if 

i jd d> . Let iY  be an ordered class of individuals with same rank as i and 1i
jf +  the value for 

objective j for the individual after i, while 1i
jf −  is the value for the individual before i. max

jf  
is the maximal value for j among iY  while min

jf  is the minimal value among iY . The 
distances consider all the objective functions and attach an infinite value to the extreme 
solutions in iY . Since these yield the best values for one of the objective functions on the 
frontier, the resulting distance is the sum of the distances for the N objective functions. 
 

MF01 / Problem 3 × 4 with 8 operations (flexible) 

jJ  
i
jkO  

kM  1M  2M  3M  4M  

Chr.
 

3 3 0 5 

1J  

1
1kO  2     
2
1kO  1     
3
1kO  0     

2J  

1
2kO  1     
2
2kO  2     
3
2kO  3     

3J  

1
3kO  0     
2
3kO  3     

0→J1J2J3, 1→J1J3J2, 2→J2J1J3, 3→J2J3J1, 4→J3J1J2 and 5→J3J2J1 / 0→MB1B, 1→MB2B, 2→MB3B, 3→MB4 

Table 2. Chromosome encoding process 

 1 1

1
( ) ( )

N
i i max min

i j j j j
j

d f f f a+ −

=
= − −  (3) 

Starting with a population tP  a new population of descendants tQ  obtains. These two 
populations mix to yield a new one, tR  of size 2N  (N is the original size of tP ). The 
individuals in tR  are ranked with respect the frontier and a new population 1tP +  obtains 
applying a tournament selection to tR . After experimenting with several genetic operators 
we have chosen the uniform crossover for the crossover and two-swap for mutation 
(Fonseca & Fleming, 1995). After the individuals have been affected by these operators and 
before allowing them to become part of a new population we apply an improvement 
operator (Frutos & Tohmé, 2009). This operator has been designed following the guidelines 
of Simulated Annealing (Dowsland, 1993). This complements the genetic procedure. For the 
change of structure of both chromosomes we select a gene at random and change its value. 
This is repeated ( )1M T ω= + , where T corresponds to the actual temperature determined 
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up from a cooling coefficient (α) while ω is a control parameter ensuring sufficient 
permutations, particularly when the temperature is high. Summarizing all this, the relevant 
parameters for this phase of the procedure are the initial temperature (Ti), the final one (Tf), 
the cooling parameter (α) and the control parameter (ω). The general layout of the whole 
procedure is depicted in Fig. 1.  

Initial population
↓↑

Individual
↓

Decoding
↓

Fitness

Set of integer numbers
{0, 1, …, (n!-1)}

Set of sequences
{J1J2...J(n-1)Jn, J1J2...JnJ(n-

1),…}

 Number of Jobs
(n)

Relating sets
0→J1J2...J(n-1)Jn
1→J1J2...JnJ(n-1)

...
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Random initialization
Mk→Value

(Chromosomes of 
Sequences)

Set of integer numbers
{0, 1, …, (m-1)}

Set of machines
{M1, M2, …, Mm}

Number of Machines 
(m)

Relating sets
0→M1
1→M2

...

Random initialization
Oikj→Value

(Chromosomes of 
Allocations)

NSGAII * Simulated Annealing + Decoding

End Algorithm

Fig. 1. Lay-out of the Hybrid Genetic Algorithm 

4. Practical experiences 

The parameters and characteristics of the computing equipment used during these 
experiments were as follows: size of the population: 200, number of generations: 500, type of 
crossover: uniform, probability of crossover: 0.90, type of mutation: two-swap, probability of 
mutation: 0.01, type of local search: simulated annealing (Ti: 850, Tf: 0.01, α: 0.95, ω: 10), 
probability of local search: 0.01, CPU: 3.00 GHZ and RAM: 1.00 GB. We worked with the 
PISA tool (A Platform and Programming Language Independent Interface for Search 
Algorithms) (Bleuler et al., 2003). The results obtained by means of HGA were compared to 
those yield by Greedy Randomized Adaptive Search Procedures (GRASP) (Binato et al., 
2001), Taboo Search (TS) (Armentano & Scrich, 2000) and Ant Colony Optimization (ACO) 
(Heinonen & Pettersson, 2007). For the problems MF01, MF02, MF03, MF04 and MF05 (Frutos 
et al., 2010), we show the results for the multi-objective analysis based on Makespan (f1, (1)) 
and Total Operation Costs (f2, (2)). They were obtained by running each algorithm 10 times. 
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For each algorithm the sets of undominated solutions 1 2 10,  ,..., P P P  were obtained as well as 
the superpopulation 1 2 10...TP P P P= ∪ ∪ ∪ . From each superpopulation a class of 
undominated solutions was extracted, constituting the Pareto frontier for each algorithm. To 
obtain an approximation to the true Pareto front (Approximate Pareto Frontier), we take the 
fronts of each algorithm, from which all the dominated solutions are eliminated. These are 
detailed in Table 3 (MF01), Table 4 (MF02), Table 5 (MF03), Table 6 (MF04) and Table 7 (MF05), 
and are shown in Fig. 2 (MF01), Fig. 3 (MF02), Fig. 4 (MF03), Fig. 5 (MF04) and Fig. 6 (MF05). 
 

MF01 / Problem 3 × 4 with 8 operations (flexible) 

 HGA (1) GRASP (2) TS (3) ACO (4) Approach 

Solutions f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 

3x4_1 6 66 6 70 6 66 6 66 6 66 

3x4_2 7 62 7 65 7 62 7 62 7 62 

3x4_3 8 55 8 61 8 55 8 57 8 55 

3x4_4 9 51 9 57 9 51 9 51 9 51 

3x4_5 10 47 10 50 10 48 10 47 10 47 

3x4_6 11 43 11 47 11 44 11 43 11 43 

3x4_7 13 42 13 43 13 43 13 42 13 42 

3x4_8 - - - - 15 41 - - 15 41 

3x4_9 17 40 17 40 - - 17 40 17 40 

3x4_10 - - - - 20 39 - - 20 39 

3x4_11 22 38 22 38 - - 22 38 22 38 

3x4_12 - - - - 25 37 - - 25 37 

3x4_13 27 36 27 37 - - 27 36 27 36 

3x4_14 28 35 28 35 28 35 28 35 28 35 

3x4_15 30 34 30 34 30 34 30 34 30 34 

3x4_16 31 33 - - 31 33 31 33 31 33 

3x4_17 32 31 32 32 32 32 32 32 32 31 

3x4_18 35 29 35 29 35 29 35 29 35 29 

Mean Time 5,325 sec. 2,147 sec. 4,673 sec. 3,218 sec. - 

(1)(Frutos et al., 2010), (2)(Binato et al., 2001), (3)(Armentano & Scrich, 2000) and (4)(Heinonen & Pettersson, 2007) 

 

Table 3. Solutions for MF01 
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MF02 / Problem 4 × 5 with 12 operations (flexible) 

 HGA (1) GRASP (2) TS (3) ACO (4) Approach 

Solutions f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 

4x5_1 16 148 16 152 16 148 16 148 16 148 

4x5_2 17 142 17 146 17 142 17 142 17 142 

4x5_3 19 139 19 140 19 139 19 140 19 139 

4x5_4 20 135 20 136 20 136 20 135 20 135 

4x5_5 22 130 22 132 22 130 22 130 22 130 

4x5_6 25 124 25 128 25 124 25 124 25 124 

4x5_7 26 122 26 122 26 122 26 122 26 122 

4x5_8 28 118 28 118 28 118 28 118 28 118 

4x5_9 - - - - 30 117 30 117 30 117 

4x5_10 31 115 31 116 31 115 - - 31 115 

4x5_11 34 108 34 110 34 110 34 108 34 108 

4x5_12 38 102 38 102 - - 38 102 38 102 

4x5_13 39 99 39 100 39 99 39 99 39 99 

4x5_14 42 95 42 97 42 95 42 95 42 95 

4x5_15 45 90 45 94 45 90 45 94 45 90 

4x5_16 50 81 50 83 50 83 50 81 50 81 

4x5_17 52 79 52 79 52 79 53 79 52 79 

4x5_18 56 68 56 72 - - 56 72 56 68 

4x5_19 - - - - 57 67 - - 57 67 

4x5_20 58 65 - - 58 65 58 65 58 65 

4x5_21 61 60 61 60 61 60 61 60 61 60 

4x5_22 63 57 63 58 63 58 63 58 63 57 

4x5_23 - - - - - - 65 55 65 55 

4x5_24 66 53 66 53 66 53 66 53 66 53 

4x5_25 67 50 67 52 67 50 - - 67 50 

4x5_26 - - - - 68 48 - - 68 48 

4x5_27 69 42 69 46 69 42 69 42 69 42 

4x5_28 71 36 71 36 71 36 71 36 71 36 

Mean Time 15,885 sec. 6,405 sec. 13,940 sec. 9,602 sec. - 

(1)(Frutos et al., 2010), (2)(Binato et al., 2001), (3)(Armentano & Scrich, 2000) and (4)(Heinonen & Pettersson, 2007) 

 
Table 4. Solutions for MF02 



 
Real-World Applications of Genetic Algorithms 

 

116 

 
 
 

MF03 / Problem 10 × 7 with 29 operations (flexible) 

  HGA (1) GRASP (2) TS (3) ACO (4) Approach 

Solutions f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 

10x7_1 15 393 15 393 15 393 15 393 15 393 

10x7_2 16 387 16 391 16 387 16 387 16 387 

10x7_3 17 383 17 385 17 383 17 383 17 383 

10x7_4 18 379 18 379 18 379 18 379 18 379 

10x7_5 19 375 19 375 19 375 19 375 19 375 

10x7_6 21 368 21 372 21 368 21 368 21 368 

10x7_7 23 360 23 360 23 360 23 360 23 360 

10x7_8 24 351 24 355 24 351 24 351 24 351 

10x7_9 25 347 - - 25 347 - - 25 347 

10x7_10 27 342 27 342 27 342 27 342 27 342 

10x7_11 33 319 33 325 33 319 33 319 33 319 

10x7_12 37 291 37 297 37 295 37 295 37 291 

10x7_13 45 260 45 260 45 260 45 260 45 260 

10x7_14 50 238 50 241 50 238 50 238 50 238 

10x7_15 61 194 61 211 61 202 61 202 61 194 

10x7_16 - - - - 72 150 72 158 72 150 

10x7_17 78 137 78 142 78 137 78 137 78 137 

10x7_18 89 98 89 107 89 104 89 98 89 98 

10x7_19 96 82 - - - - - - 96 82 

10x7_20 109 48 - - 109 57 109 48 109 48 

10x7_21 116 34 116 41 116 34 116 34 116 34 

10x7_22 122 29 122 29 122 29 122 29 122 29 

Mean Time 21,502 sec. 7,669 sec. 18,869 sec. 15,994 sec. - 

(1)(Frutos et al., 2010), (2)(Binato et al., 2001), (3)(Armentano & Scrich, 2000) and (4)(Heinonen & Pettersson, 2007) 

 
Table 5. Solutions for MF03 
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MF04 / Problem 10 × 10 with 30 operations (flexible) 

 HGA (1) GRASP (2) TS (3) ACO (4) Approach 

Solutions f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 

10x10_1 7 282 7 282 7 282 7 282 7 282 

10x10_2 8 267 8 274 8 267 8 267 8 267 

10x10_3 10 254 10 254 10 254 10 254 10 254 

10x10_4 11 241 11 246 11 241 11 241 11 241 

10x10_5 13 224 13 224 13 224 13 224 13 224 

10x10_6 15 205 15 205 15 205 15 205 15 205 

10x10_7 16 198 16 198 16 198 16 198 16 198 

10x10_8 - - - - 18 186 - - 18 186 

10x10_9 19 176 19 185 19 176 19 180 19 176 

10x10_10 23 148 23 148 23 148 23 148 23 148 

10x10_11 25 137 25 137 25 137 25 137 25 137 

10x10_12 28 113 - - - - - - 28 113 

10x10_13 29 107 29 115 29 107 29 111 29 107 

10x10_14 31 87 31 96 31 90 31 90 31 87 

10x10_15 33 78 33 83 33 78 33 78 33 78 

10x10_16 34 73 34 73 34 73 34 73 34 73 

10x10_17 36 62 36 67 36 62 36 62 36 62 

10x10_18 37 58 37 58 37 58 37 58 37 58 

10x10_19 38 57 38 57 38 57 38 57 38 57 

10x10_20 41 51 41 54 41 55 41 55 41 51 

10x10_21 44 49 44 51 44 49 44 49 44 49 

10x10_22 47 43 47 48 - - - - 47 43 

10x10_23 50 42 50 42 50 42 50 42 50 42 

10x10_24 53 40 53 40 53 40 53 40 53 40 

10x10_25 - - - - - - 56 37 56 37 

10x10_26 57 34 57 34 57 34 57 34 57 34 

10x10_27 60 30 60 30 60 30 60 30 60 30 

Mean Time 31,439 sec. 11,214 sec. 27,590 sec. 22,999 sec. - 

(1)(Frutos et al., 2010), (2)(Binato et al., 2001), (3)(Armentano & Scrich, 2000) and (4)(Heinonen & Pettersson, 2007) 

 
Table 6. Solutions for MF04 
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MF05 / Problem 15 × 10 with 56 operations (flexible) 
 HGA (1) GRASP (2) TS (3) ACO (4) Approach 

Solutions f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 

15x10_1 23 799 23 799 23 799 23 799 23 799 
15x10_2 25 749 25 749 25 749 25 749 25 749 
15x10_3 26 731 26 731 26 731 26 731 26 731 
15x10_4 27 719 27 719 27 719 27 719 27 719 
15x10_5 30 678 30 693 30 678 30 687 30 678 
15x10_6 32 646 - - - - 32 646 32 646 
15x10_7 33 631 33 631 33 631 33 631 33 631 
15x10_8 35 609 35 615 35 609 35 609 35 609 
15x10_9 38 575 38 587 38 578 38 575 38 575 
15x10_10 - - - - 41 561 41 561 41 561 
15x10_11 41 519 43 519 43 519 43 519 43 519 
15x10_12 44 484 44 484 44 484 44 484 44 484 
15x10_13 46 437 46 452 46 448 46 437 46 437 
15x10_14 49 411 49 411 49 411 49 411 49 411 
15x10_15 52 379 52 379 52 379 52 379 52 379 
15x10_16 53 346 53 346 53 346 53 346 53 346 
15x10_17 55 314 55 322 55 318 55 318 55 314 
15x10_18 57 276 - - - - - - 56 276 
15x10_19 - - - - 58 266 - - 58 266 
15x10_20 62 220 62 242 62 232 62 242 62 220 
15x10_21 67 209 67 212 67 209 67 209 67 209 
15x10_22 71 195 71 204 71 195 71 195 71 195 
15x10_23 75 178 75 181 75 178 75 178 75 178 
15x10_24 88 153 88 157 88 153 88 153 88 153 
15x10_25 92 135 92 147 92 140 92 140 92 135 
15x10_26 101 122 101 134 101 129 101 122 101 122 
15x10_27 112 114 112 125 112 114 112 114 112 114 
15x10_28 - - - - - - 119 97 119 97 
15x10_29 127 86 127 86 127 86 127 86 127 86 
15x10_30 135 73 135 73 135 73 135 73 135 73 
15x10_31 138 56 138 56 138 56 138 56 138 56 

Mean Time 42,288 sec. 15,084 sec. 37,110 sec. 35,552 sec. - 
(1)(Frutos et al., 2010), (2)(Binato et al., 2001), (3)(Armentano & Scrich, 2000) and (4)(Heinonen & Pettersson, 2007) 

 
 

Table 7. Solutions for MF05 
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Fig. 2. Makespan vs. Total Operation Costs (MF01) 
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Fig. 3. Makespan vs. Total Operation Costs (MF02) 
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Fig. 4. Makespan vs. Total Operation Costs (MF03) 
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Fig. 5. Makespan vs. Total Operation Costs (MF04) 
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Fig. 6. Makespan vs. Total Operation Costs (MF05) 

In order to compare the results of the algorithms and establish the better option for the 
Flexible JSSP, several tests were applied over the solutions. First, we consider a dominance 
ranking among the different algorithms. One-tailed Mann-Whitney rank sum (Conover, 
1999) was run over the results (Ranktest, Table 8 (MF01), Table 9 (MF02), Table 10 (MF03), 
Table 11 (MF04) and Table 12 (MF05)). The outcomes are summarized in Table 1. None of 
the results for MF01, MF02, MF03, MF04 and MF05 is statistically significant at an overall 
significance level α=0.05. This indicates that no algorithm generate approximation sets that 
are significantly better. Next, we considered unary quality indicators using normalized 
approximation sets. Then, we applied the unary indicators (unary hypervolume indicator IH, 
unary epsilon indicatior Ie1 and R indicator IR21) on the normalized approximation sets as 
well as on the reference set generated by PISA (IH, Ie1 and IR21, Table 8 (MF01), Table 9 
(MF02), Table 10 (MF03), Table 11 (MF04) and Table 12 (MF05)). Again, no significant 
differences were found at the 0.05 level. 
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Test for Problem MF01
Ranktest

 HGA GRASP TS ACO 
HGA - 0,4668807 0,5248382 0,5000000 

GRASP 0,5331193 - 0,5578024 0,5331193 
TS 0,4751618 0,4421976 - 0,4751618 

ACO 0,5000000 0,4668807 0,5248382 - 
IH 

 HGA GRASP TS ACO 
HGA - 0,4849375 0,5193377 0,5451365 

GRASP 0,5150625 - 0,5537379 0,5782757 
TS 0,4806623 0,4462621 - 0,5793756 

ACO 0,4548635 0,4217243 0,4206244 - 
Ie1 

 HGA GRASP TS ACO 
HGA - 0,4668807 0,5000000 0,5248382 

GRASP 0,5331193 - 0,5331193 0,5567435 
TS 0,5000000 0,4668807 - 0,5578024 

ACO 0,4751618 0,4421976 0,4751618 - 
IR21 

 HGA GRASP TS ACO 
HGA - 0,4560385 0,4883887 0,5126501 

GRASP 0,5439615 - 0,5207389 0,5438144 
TS 0,5116113 0,4792611 - 0,5448488 

ACO 0,4873499 0,4561856 0,4551512 - 

Table 8. Comparing HGA, GRASP, TS and ACO (MF01) 
 

Test for Problem MF02
Ranktest

 HGA GRASP TS ACO 
HGA - 0,4507347 0,4364051 0,5123441 

GRASP 0,5492653 - 0,4920168 0,5614884 
TS 0,5635949 0,5079832 - 0,5792996 

ACO 0,4876559 0,4385116 0,4207004 - 
IH 

 HGA GRASP TS ACO 
HGA - 0,4554712 0,5065161 0,4369711 

GRASP 0,5445288 - 0,5705083 0,5110457 
TS 0,4934839 0,4294917 - 0,4532833 

ACO 0,5630289 0,4889543 0,5467167 - 
Ie1 

 HGA GRASP TS ACO 
HGA - 0,4385116 0,4876559 0,4207004 

GRASP 0,5614884 - 0,5492653 0,4920168 
TS 0,5123441 0,4507347 - 0,4364051 
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ACO 0,5792996 0,5079832 0,5635949 - 
IR21 

 HGA GRASP TS ACO 
HGA - 0,4283282 0,4763312 0,4109306 

GRASP 0,5716718 - 0,5365099 0,4805909 
TS 0,5236688 0,4634901 - 0,4262707 

ACO 0,5890694 0,5194091 0,5737293 - 

Table 9. Comparing HGA, GRASP, TS and ACO (MF02) 
 

Test for Problem MF03
Ranktest

 HGA GRASP TS ACO 
HGA - 0,6430292 0,5250930 0,5052068 

GRASP 0,3569708 - 0,3782149 0,3627307 
TS 0,4749070 0,6217851 - 0,4791809 

ACO 0,4947932 0,6372693 0,5208191 - 
IH 

 HGA GRASP TS ACO 
HGA - 0,6619159 0,5139296 0,5409620 

GRASP 0,3380841 - 0,3707768 0,3928425 
TS 0,4860704 0,6292232 - 0,5454012 

ACO 0,4590380 0,6071575 0,4545988 - 
Ie1 

 HGA GRASP TS ACO 
HGA - 0,6372693 0,4947932 0,5208191 

GRASP 0,3627307 - 0,3569708 0,3782149 
TS 0,5052068 0,6430292 - 0,5250930 

ACO 0,4791809 0,6217851 0,4749070 - 
IR21

 HGA GRASP TS ACO 
HGA - 0,6224702 0,4833028 0,5087244 

GRASP 0,3775298 - 0,3486810 0,3694317 
TS 0,5166972 0,6513190 - 0,5128990 

ACO 0,4912756 0,6305683 0,4871010 - 

Table 10. Comparing HGA, GRASP, TS and ACO (MF03) 
 

Test for Problem MF04
Ranktest

 HGA GRASP TS ACO 
HGA - 0,4840368 0,5910066 0,4641226 

GRASP 0,5159632 - 0,6017605 0,4794311 
TS 0,4089934 0,3982395 - 0,3824045 

ACO 0,5358774 0,5205689 0,6175955 - 
IH 

 HGA GRASP TS ACO 
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HGA - 0,5407021 0,5566027 0,6414813 
GRASP 0,4592979 - 0,5359183 0,6250339 

TS 0,4433973 0,4640817 - 0,6138640 
ACO 0,3585187 0,3749661 0,3861360 - 

Ie1 
 HGA GRASP TS ACO 

HGA - 0,5205689 0,5358774 0,6175955 
GRASP 0,4794311 - 0,5159632 0,6017605 

TS 0,4641226 0,4840368 - 0,5910066 
ACO 0,3824045 0,3982395 0,4089934 - 

IR21

 HGA GRASP TS ACO 
HGA - 0,5084799 0,5234329 0,6032533 

GRASP 0,4915201 - 0,5039812 0,5877861 
TS 0,4765671 0,4960188 - 0,5772819 

ACO 0,3967467 0,4122139 0,4227181 - 

Table 11. Comparing HGA, GRASP, TS and ACO (MF04) 
 

Test for Problem MF05
Ranktest

 HGA GRASP TS ACO 
HGA - 0,4551815 0,4673350 0,4713557 

GRASP 0,5448185 - 0,5207202 0,5201772 
TS 0,5326650 0,4792798 - 0,5031851 

ACO 0,5286443 0,4798228 0,4968146 - 
IH 

 HGA GRASP TS ACO 
HGA - 0,4983801 0,5501285 0,5160291 

GRASP 0,5016199 - 0,5658896 0,5408593 
TS 0,4498715 0,4341104 - 0,4854094 

ACO 0,4839709 0,4591407 0,5145906 - 
Ie1 

 HGA GRASP TS ACO 
HGA - 0,4798228 0,5296443 0,4968146 

GRASP 0,5201772 - 0,5448185 0,5207202 
TS 0,4713557 0,4551815 - 0,4673350 

ACO 0,5031557 0,4792798 0,5326650 - 
IR21

 HGA GRASP TS ACO 
HGA - 0,4686801 0,5173445 0,4852773 

GRASP 0,5313199 - 0,5321664 0,5086278 
TS 0,4826555 0,4678336 - 0,4564823 

ACO 0,5147227 0,4913722 0,5435177 - 
 

Table 12. Comparing HGA, GRASP, TS and ACO (MF05) 
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Finally, we note that there are no major differences between the Pareto frontiers generated 
by the four algorithms. Therefore, we calculated the percentage of solutions provided by 
each algorithm that belong to the Approximate Pareto Frontier (see Table 13). 
 

Percentage of solutions in the Approximate Pareto Frontier 
 HGA (1) GRASP (2) TS (3) ACO (4) 

MF01 83,33% 27,78% 61,11% 72,22% 
MF02 85,71% 25,00% 75,00% 71,43% 
MF03 95,45% 31,82% 77,27% 77,27% 
MF04 92,59% 51,85% 81,48% 74,07% 
MF05 90,32% 45,16% 70,97% 80,65% 

(1) (Frutos et al., 2010), (2)(Binato et al., 2001), (3)(Armentano & Scrich, 2000) and (4)(Heinonen & Pettersson, 2007) 

Table 13. Comparing HGA, GRASP, TS and ACO (MF01, MF02, MF03, MF04 and MF05) 

5. Conclusions 

We presented a Hybrid Genetic Algorithm (HGA) intended to solve the Flexible Job-Shop 
Scheduling Problem (Flexible JSSP). The application of HGA required the calibration of 
parameters, in order to yield valid values for the problem at hand, which constitute also a 
reference for similar problems. We have shown that this HGA yields more solutions in the 
Approximate Pareto Frontier than other algorithms. As said above, PISA has been used here 
as a guide for the implementation of our HGA. Nevertheless, PISA itself has features that 
we tried to overcome, making the understanding and extension of its outcomes a little bit 
hard. JMetal (Meta-heuristic Algorithms in Java) (Durillo et al., 2006) is already an 
alternative to PISA implemented on JAVA. We are currently experimenting with other 
techniques of local search in order to achieve a more aggressive exploration. We are also 
interested in evaluating the performance of the procedure over other kinds of problems to 
see whether it saves resources without sacrificing precision in convergence.  
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1. Introduction 

Reliability engineering is known to have been first applied to communication and 
transportation systems in the late 1940's and early 1950's. Reliability is the probability that an 
item will perform a required function without failure under stated conditions for a stated 
period of time. Therefore a system with high reliability can be likened to a system which has a 
superior quality. Reliability is one of the most important design factors in the successful and 
effective operation of complex technological systems. As explained by Tzafestas (1980), one of 
the essential steps in the design of multiple component systems is the problem of using the 
available resources in the most effective way so as to maximize the system reliability, or so as 
to minimize the consumption of resources while achieving specific reliability goals. The 
improvement of system reliability can be accomplished using the following methods: 
reduction of the system complexity, the allocation highly reliable components, and the 
allocation of component redundancy alone or combined with high component reliability, and 
the practice of a planned maintenance and repair schedule. This study deals with reliability 
optimization that maximizes the system reliability subject to resource constraints. 

This study suggests mathematical programming models and a hybrid parallel genetic 
algorithm (HPGA). The suggested algorithm includes different heuristics such as swap, 2-
opt, and interchange (except for reliability allocation problem with component choices 
(RAPCC)) for an improvement solution. The component structure, reliability, cost, and 
weight were computed by using HPGA and the experimental results of HPGA were 
compared with the results of existing meta-heuristics and CPLEX. 

2. Literature review 

The goal of reliability optimization is to maximize the reliability of a system considering 
some constraints such as cost, weight, and so on. In general, reliability optimization divides 
into two categories: the reliability-redundancy allocation problem (RRAP) and the reliability 
allocation problem with component choices (RAPCC). 

2.1 The reliability-redundancy allocation problem (RRAP) 

The RRAP is the determination of both optimal component reliability and the number of 
component redundancy allowing mixed components to maximize the system reliability 
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under cost and weight constraints. It is known as the NP-hard problem suggested by Chern 
(1992). 

A variety of algorithms, as summarized in Tillman et al. (1977), and more recently by Kuo & 
Prasad (2000), Kuo & Wan (2007), including exact methods, heuristics and meta-heuristics 
have already been proposed for the RRAP. An exact optimal solution is obtained by exact 
methods such as cutting plane method (Tillman, 1969), branch-and-bound algorithm (Chern 
& Jan, 1986; Ghare & Taylor, 1969), dynamic programming (Bellman & Dreyfus, 1958; Fyffe 
et al., 1968; Nakagawa & Miyazaki, 1981; Yalaoui et al., 2005), and goal programming (Gen 
et al., 1989). However, as the size of problem gets larger, such methods are difficult to apply 
to get a solution and require more computational effort. Therefore, heuristics and meta-
heuristics are used to find a near-optimal solution in recent research. 

The research using heuristics is as follows. Kuo et al. (1987) present a heuristic method 
based on a branch-and-bound strategy and lagrangian multipliers. Jianping (1996) has 
developed a method called a bounded heuristic method. You & Chen (2005) proposed an 
efficient heuristic method. Meta-heuristics such as genetic algorithm (Coit & Smith, 1996; 
Ida et al., 1994; Painton & Campbell, 1995), tabu search (Kulturel-Konak et al., 2003), ant 
colony optimization (Liang & Smith, 2004), and immune algorithm (Chen & You, 2005) have 
been introduced to solve the RRAP. 

2.2 The reliability allocation problem with component choices (RAPCC) 

The RAPCC is the determination of optimal component reliability to maximize the system 
reliability under cost constraint. A problem is formulated as a binary integer programming 
model with a nonlinear objective function (Ait-Kadi & Nourelfath, 2001), which is 
equivalent to a knapsack problem with multiple-choice constraint, so that it is the NP-hard 
problem (Garey & Johnson, 1979). Some algorithms for such knapsack problems with 
multiple-choice constraint have been suggested in the literature (Nauss, 1978; Sinha & 
Zoltners, 1979; Sung & Lee, 1994). 

A variety of algorithms including exact methods, heuristics, and meta-heuristics have 
already been proposed for the RAPCC. An exact optimal solution is obtained by branch-
and-bound algorithm (Djerdjour & Rekab, 2001; Sung & Cho, 1999). Meta-heuristics such as 
neural network (Nourelfath & Nahas, 2003), simulated annealing (Kim et al., 2004; Kim et 
al., 2008), tabu search (Kim et al., 2008), and ant colony optimization (Nahas & Nourelfath, 
2005) have been introduced to solve the RAPCC. Also, Kim et al. (2008) solved the large-
scale examples by using a reoptimization procedure with tabu search and simulated 
annealing. 

3. Mathematical programming models 

Notations and decision variables in the mathematical programming model are as follows. 

n : the number of subsystems 
m : the number of components 
i : index for subsystems ( 1,2, ,i n=  ) 
j : index for components ( 1,2, ,j m=  ) 
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SR : system reliability 

iR : reliability of subsystem i  

SC : system-level constraint limits for cost 

SW : system-level constraint limits for weight 

ijr : reliability of component j  available for subsystem i  

ijc : cost of component j  available for subsystem i  

ijw : weight of component j  available for subsystem i  

iu : maximum number of components used in subsystem i  

ijx : quantity of component j  used in subsystem i    (for RRAP) 

( )1, if component usedinsubsystem
for RAPCC

0, otherwise


= 


ij

j i
x  

3.1 Reliability-redundancy allocation problem (RRAP) 

This study deals with the reliability-redundancy allocation problem in a series-parallel 
system as shown in Fig. 1. 

 
Fig. 1. Series-parallel system 

The relationship between the system reliability ( SR ) and the reliability of subsystem i  ( iR ), 
in a series system, is shown in Eq. (1). 

 
1

n

S i
i

R R
=

= ∏  (1) 

The relationship between the reliability of subsystem i  ( iR ) and the reliability of 
component j  available for subsystem i  ( ijr ), in a parallel system, is shown in Eq. (2). 

 
1

1 1 ij
m x

i ij
j

R r
=

 = − − ∏  (2) 
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Using Eqs. (1) and (2), the mathematical programming model of the RRAP in a series-
parallel system is as follows. 

 Maximize   
1 1 1

1 1
ijxn n m

S i ij
i i j

R R r
= = =

   = = − −  
  

∏ ∏ ∏  (3) 

 Subject to   
1 1

n m

ij ij S
i j

c x C
= =

⋅ ≤  (4) 

 
1 1

n m

ij ij S
i j

w x W
= =

⋅ ≤  (5) 

   
1

1
m

ij i
j

x u
=

≤ ≤ , 1,2, ,i n=   (6) 

 0ijx ≥ , 1,2, ,i n=  , 1,2, ,j m=  , Integer (7) 

The objective function is to maximize the system reliability in a series-parallel system. Eqs. 
(4) and (5) show the resource constraints with cost and weight. Eq. (6) shows the maximum 
and minimum number of components that can be used for each subsystem. Eq. (7) shows 
the integer decision variables. 

3.2 Reliability allocation problem with component choices (RAPCC) 

As shown in Fig. 2, a series system consisting of n subsystems where each subsystem has 
several component alternatives which can perform same functions with different 
characteristics is considered in this study. The problem is proposed to select the optimal 
combination of component alternatives to maximize the system reliability given the cost. 
Only one component will be adopted for each subsystem. 

 
Fig. 2. Series system 

Using Eq. (1), the mathematical programming model of the RAPCC in a series system is as 
follows. 

 Maximize   
11

n m

S ij ij
ji

R r x
==

 
 = ⋅
 
 
∏  (8) 

 Subject to   
1 1

n m

ij ij S
i j

c x C
= =

⋅ ≤  (9) 
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1

1
m

ij
j

x
=

= , 1,2, ,i n=   (10) 

 { }0,1ijx = , 1,2, ,i n=  , 1,2, ,j m=   (11) 

The objective function is to maximize the system reliability in a series system. Eq. (9) shows 
the cost constraint, Eq. (10) represents the multiple-choice constraint which is that the 
problem prohibits component redundancy, and Eq. (11) defines the decision variables. 

4. Hybrid parallel genetic algorithm 

The genetic algorithm is a stochastic search method based on the natural selection, 
reproduction, and evolution theory proposed by Holland (1975). The parallel genetic 
algorithm paratactically evolves by operating several sub-populations. This study suggests a 
hybrid parallel genetic algorithm for reliability optimization with resource constraints. The 
suggested algorithm includes different heuristics such as swap, 2-opt, and interchange 
(except for RAPCC) for an improvement solution. The suggested process of a hybrid parallel 
genetic algorithm is shown in Fig. 3. 

4.1 Gene representation 

The gene representation has to reflect the properties of the system structure. The suggested 
algorithm for the RRAP represents a gene by one string as shown in Table 1. 
 

Subsystem(Component Alternatives) 1(4) 2(3) 3(4) 
Redundancy & Component 2 1 1 0 1 0 2 0 1 3 0 

Table 1. Gene representation (RRAP) 

The subsystem in Table 1 indicate the nominal number of subsystem. However, it is not 
necessary for this number to be one for the composition of a substantial objective function. 
The “Redundancy & Component” row represents the number of components available for 
each subsystem. For example, as shown Table 1, subsystem 1 consists of two components of 
C1, one component of C2, one component of C3. Table 1 can be expressed as shown in Fig. 4. 

The suggested algorithm for the RAPCC represents a gene by one string as shown in Table 2. 

The subsystem in Table 2 indicates the nominal number of subsystems. However, it is not 
necessary for the composition of a substantial objective function. The “Component” row 
represents the available component number for each subsystem. For example, as shown 
Table 2, a series system uses component No.3 in subsystem 1, component No.2 in subsystem 
2, …, and component No.5 in subsystem 6. 

4.2 Population 

The population of a parallel genetic algorithm consists of an initial population and several 
sub-populations. The initial population is usually generated by the random and the heuristic 
generation method. The heuristic generation method tends to interrupt global search. 
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Therefore, the initial population is generated by the random generation method in this 
study. The initial population is composed 500 individuals with 100 individuals allocated for 
each sub-population. 

 
Fig. 3. Hybrid parallel genetic algorithm 

 
Fig. 4. System structure of Table 1 
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Subsystem 1 2 3 4 5 6 
Component 3 2 4 1 3 5 

Table 2. Gene representation (RAPCC) 

4.3 Fitness 

The fitness function to evaluate the solutions is commonly obtained from the objective 
function. Penalty functions were used for infeasible solutions by the random generation 
method in this study. Eqs. (12) and (13) show cost and weight penalty functions, respectively. 

 
1, total cost

1 , otherwise
cos

≤
= 



s

C

C
P

total t
 (12) 

 
1, total weight

1 , otherwise

≤
= 



s

W

W
P

total weight
 (13) 

The multiplication of system reliability and penalty functions related to its cost and weight 
(except for RAPCC) were used to calculate the fitness of the solutions in the suggested 
algorithm as shown in Eq. (14). 

 S C Wfitness R P P= ⋅ ⋅  (14) 

4.4 Selection 

The selection method to choose the pairs of parents is applied by the roulette wheel method 
in the suggested algorithm. The roulette wheel method is one of the most common 
proportionate selection schemes. In this scheme, the probability to select an individual is 
proportional to its fitness. It is also stochastically possible for infeasible solutions to survive. 
The suggested algorithm applies the elitism strategy for the survival of an optimum solution 
by generation in order to avoid the disappearance of an excellent solution. 

4.5 Crossover 

The crossover is the main genetic operator. It operates on two individuals at a time and 
generates offspring by combining both individuals' features. The crossover operator applies 
a uniform crossover in the suggested algorithm as shown in Fig. 5. The steps of the uniform 
crossover are as follows. 

Step 1. Random numbers were generated for individuals and the individual for crossover 
was selected by comparing the crossover rate for each individual. 

Step 2. The selected individuals were mated between themselves. 
Step 3. For each bit of the mated individuals was generated a random number of either 0 or 1. 
Step 4. The two offspring bits were generated through a crossover of the two parents' bits 

when the random number associated with those bits was 1. 
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Fig. 5. Uniform crossover 

4.6 Mutation 

The mutation is a background operator which produces spontaneous random changes in 
various individuals. The mutation operator applies the uniform mutation in the suggested 
algorithm as shown in Fig. 6. The steps of the uniform mutation are as follows. 

Step 1. The mutation bits were selected by comparing a random number with the mutation 
rate after Generating a random number between 0~1 for all individual bits. 

Step 2. The value of the selected bits were substituted with a new value between 0 and the 
maximum number of components in each subsystem. 

 

 
Fig. 6. Uniform mutation 

4.7 Migration 

The migration is an exchange operator to change useful information between neighbor sub-
populations. Periodically, each sub-population sends its best individuals to its neighbors. 
When dealing with the migration, the main issues to be considered are migration 
parameters such as neighborhood structure, the individuals’ selection for exchanging, sub-
population size, migration period, and migration rate. In the suggested algorithm, the 
neighborhood structure uses a ring topology as shown in Fig. 7 and the individuals’ 
selection for exchanging is determined by the application of the fitness function. Other 
migration parameters are shown in Table 3. 
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Fig. 7. Neighborhood structure (ring topology) 
 

Migration parameter Sub-population size Migration period Migration rate 
Value 100 50 0.2 

Table 3. Migration parameters 

4.8 Genetic parameters 

The genetic parameters include the population size, crossover rate (Pc), mutation rate (Pm), 
and the number of generations. It is hard to find the best parametric values, so the following 
parameters were obtained by repeated experiments. The genetic parameters are shown in 
Table 4. 
 

Genetic 
parameter 

Population 
size 

Crossover 
rate(Pc) 

Mutation 
rate(Pm) 

The number of 
generations 

Value 500 0.8 0.02 1,000~3,000 

Table 4. Genetic parameters 

4.9 Improvement solution 

The suggested algorithm includes different heuristics such as swap, 2-opt, and interchange 
(except for RAPCC) for improvement of the solution. The swap heuristic was used to 
exchange each bit which selected two solutions among the five solutions generated by the 
parallel genetic algorithm. After applying the swap heuristic, a solution of the parallel 
genetic algorithm was selected by using best fitness. In a selected solution, the 2-opt 
heuristic performed the exchanging of two bits to enable improvement. The interchange 
heuristic was applied to each subsystem to exchanging sequences of bits. Finally, a solution 
of a hybrid parallel genetic algorithm was produced using best fitness after the application 
of the interchange heuristic. 

5. Numerical experiments 

5.1 The reliability-redundancy allocation problem (RRAP) 

In order to evaluate the performance of the suggested algorithm for the integer nonlinear 
RRAP, this study performed experiments on 33 variations of Fyffe et. al. (1968), as suggested 
by Nakagawa & Miyazaki (1981). In this problem, the series–parallel system is connected by 
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14 parallel subsystems and each has three or four components of choice. The objective is to 
maximize the reliability of the series–parallel system subject to the cost constraint of 130 and 
weight constraint ranging from 159 to 190. The maximum number of components is 6 in 
each subsystem. The component data for testing problems are listed in Table 5. 
 

Subsystem 
No. 

Component choices 

Choice 1 Choice 2 Choice 3 Choice 4 

R C W R C W R C W R C W 

1 0.90 1 3 0.93 1 4 0.91 2 2 0.95 2 5 

2 0.95 2 8 0.94 1 10 0.93 1 9 ＊ ＊ ＊ 

3 0.85 2 7 0.90 3 5 0.87 1 6 0.92 4 4 

4 0.83 3 5 0.87 4 6 0.85 5 4 ＊ ＊ ＊ 

5 0.94 2 4 0.93 2 3 0.95 3 5 ＊ ＊ ＊ 

6 0.99 3 5 0.98 3 4 0.97 2 5 0.96 2 4 

7 0.91 4 7 0.92 4 8 0.94 5 9 ＊ ＊ ＊ 

8 0.81 3 4 0.90 5 7 0.91 6 6 ＊ ＊ ＊ 

9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8 

10 0.83 4 6 0.85 4 5 0.90 5 6 ＊ ＊ ＊ 

11 0.94 3 5 0.95 4 6 0.96 5 6 ＊ ＊ ＊ 

12 0.79 2 4 0.82 3 5 0.85 4 6 0.90 5 7 

13 0.98 2 5 0.99 3 5 0.97 2 6 ＊ ＊ ＊ 

14 0.90 4 6 0.92 4 7 0.95 5 6 0.99 6 9 

Table 5. Component data for testing problems 

To use CPLEX, this study performed additional steps for transforming the integer nonlinear 
RRAP into an equivalent binary knapsack problem(Bae et al., 2007; Coit, 2003) as shown in 
Eqs. (15) to (21). 

 Maximize   
1 1

11 0
ln

i i

i im i im

i im

u un

S ix x ix x
i x x

R r y
= =

= ⋅      (15) 

 Subject to   
1

11 0 1

i i

i im

i im

u un m

ij ij ix x S
i x x j

x c y C
= = =

 
 ⋅ ⋅ ≤
 
 

      (16) 

 
1

11 0 1

i i

i im

i im

u un m

ij ij ix x S
i x x j

x w y W
= = =

 
 ⋅ ⋅ ≤
 
 

      (17) 
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1

1 0
1

i i

i im

i im

u u

ix x
x x

y
=

=   , 1,2, ,i n=   (18) 

 
1

1
m

ij i
j

x u
=

≤ ≤ , 1,2, ,i n=   (19) 

 0ijx ≥ , 1,2, ,i n=  , 1,2, ,j m=  , Integer (20) 

 
1

1, if of the th component are used for subsystem 
0, otherwisei im

ij
ix x

x j i
y

= 


  (21) 

 where, ( )1 2
1 1 2ln 1 i i im

i im

x x x
ix x i i imr q q q= −  , ( )1 imim xx

imimq r= − , 1,2, ,i n=   

The experimental results including component structure, reliability, cost, and weight by 
using a hybrid parallel genetic algorithm are shown in Table 6. 
 

No. W Components structure Reliability Cost Weight 
1 191 333, 11, 444, 3333, 222, 22, 111, 1111, 12, 233, 33, 1111, 11, 34 0.9868110 130 191 
2 190 333, 11, 444, 3333, 222, 22, 111, 1111, 11, 233, 33, 1111, 12, 34 0.9864161 130 190 
3 189 333, 11, 444, 3333, 222, 22, 111, 1111, 23, 233, 13, 1111, 11, 34 0.9859217 130 189 
4 188 333, 11, 444, 3333, 222, 22, 111, 1111, 23, 223, 13, 1111, 12, 34 0.9853782 130 188 
5 187 333, 11, 444, 3333, 222, 22, 111, 1111, 13, 223, 13, 1111, 22, 34 0.9846881 130 187 
6 186 333, 11, 444, 333, 222, 22, 111, 1111, 23, 233, 33, 1111, 22, 34 0.9841755 129 186 
7 185 333, 11, 444, 3333, 222, 22, 111, 1111, 23, 223, 13, 1111, 22, 33 0.9835049 130 185 
8 184 333, 11, 444, 333, 222, 22, 111, 1111, 33, 233, 33, 1111, 22, 34 0.9829940 130 184 
9 183 333, 11, 444, 333, 222, 22, 111, 1111, 33, 223, 33, 1111, 22, 34 0.9822557 129 183 
10 182 333, 11, 444, 333, 222, 22, 111, 1111, 33, 333, 33, 1111, 22, 33 0.9815183 130 182 
11 181 333, 11, 444, 333, 222, 22, 111, 1111, 33, 233, 33, 1111, 22, 33 0.9810271 129 181 
12 180 333, 11, 444, 333, 222, 22, 111, 1111, 33, 223, 33, 1111, 22, 33 0.9802902 128 180 
13 179 333, 11, 444, 333, 222, 22, 111, 1111, 33, 223, 13, 1111, 22, 33 0.9795047 126 179 
14 178 333, 11, 444, 333, 222, 22, 111, 1111, 33, 222, 13, 1111, 22, 33 0.9784003 125 178 
15 177 333, 11, 444, 333, 222, 22, 111, 113, 33, 223, 13, 1111, 22, 33 0.9775953 126 177 
16 176 333, 11, 444, 333, 222, 22, 33, 1111, 33, 223, 13, 1111, 22, 33 0.9766905 124 176 
17 175 333, 11, 444, 333, 222, 22, 13, 1111, 33, 223, 33, 1111, 22, 33 0.9757079 125 175 
18 174 333, 11, 444, 333, 222, 22, 13, 1111, 33, 223, 13, 1111, 22, 33 0.9749261 123 174 
19 173 333, 11, 444, 333, 222, 22, 13, 1111, 33, 222, 13, 1111, 22, 33 0.9738268 122 173 
20 172 333, 11, 444, 333, 222, 22, 13, 113, 33, 223, 13, 1111, 22, 33 0.9730266 123 172 
21 171 333, 11, 444, 333, 222, 22, 13, 113, 33, 222, 13, 1111, 22, 33 0.9719295 122 171 
22 170 333, 11, 444, 333, 222, 22, 13, 113, 33, 222, 11, 1111, 22, 33 0.9707604 120 170 
23 169 333, 11, 444, 333, 222, 22, 11, 113, 33, 222, 13, 1111, 22, 33 0.9692910 121 169 
24 168 333, 11, 444, 333, 222, 22, 11, 113, 33, 222, 11, 1111, 22, 33 0.9681251 119 168 
25 167 333, 11, 444, 333, 22, 22, 13, 113, 33, 222, 11, 1111, 22, 33 0.9663351 118 167 
26 166 333, 11, 44, 333, 222, 22, 13, 113, 33, 222, 11, 1111, 22, 33 0.9650416 116 166 
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27 165 333, 11, 444, 333, 22, 22, 11, 113, 33, 222, 11, 1111, 22, 33 0.9637118 117 165 
28 164 333, 11, 44, 333, 222, 22, 11, 113, 33, 222, 11, 1111, 22, 33 0.9624219 115 164 
29 163 333, 11, 44, 333, 22, 22, 13, 113, 33, 222, 11, 1111, 22, 33 0.9606424 114 163 
30 162 333, 11, 44, 333, 22, 22, 11, 113, 33, 222, 13, 1111, 22, 33 0.9591884 115 162 
31 161 333, 11, 44, 333, 22, 22, 11, 113, 33, 222, 11, 1111, 22, 33 0.9580346 113 161 
32 160 333, 11, 44, 333, 22, 22, 11, 111, 33, 222, 13, 1111, 22, 33 0.9557144 112 160 
33 159 333, 11, 44, 333, 22, 22, 11, 111, 33, 222, 11, 1111, 22, 33 0.9545648 110 159 

Table 6. Experimental results by using HPGA (C=130) 

The experimental results compared to the results of CPLEX and existing meta-heuristics, 
such as GA (Coit & Smith, 1996), TS (Kulturel-Konak et al., 2003), ACO (Liang & Smith, 
2004), and IA (Chen & You, 2005) are shown in Table 6. The comparison of CPLEX, meta-
heuristics, and the suggested algorithm is shown in Table 7. 

The suggested algorithm in all problems showed the optimal solution 6~9 times out 0f 10 
runs and obtained same or superior solutions compared to the meta-heuristics. Of the 
results in Table 7, when compared with the meta-heuristics, 25 solutions are superior to GA, 
7 solutions are superior to TS and ACO, and 9 solutions are superior to IA, respectively. The 
other solutions are the same. The suggested algorithm could paratactically evolve by 
operating several sub-populations and improve on the solution through swap, 2-opt, and 
interchange heuristics. 
 

No. W 

Reliability Number 
of 

optimal 
by HPGA 
(10 runs) 

CPLEX GA TS ACO IA 
HPGA 
(This 

study) 

1 191 0.9868110 0.9867 0.986811 0.9868 0.9868110 0.9868110 8 / 10 
2 190 0.9864161 0.9857 0.986416 0.9859 0.9864161 0.9864161 7 / 10 
3 189 0.9859217 0.9856 0.985922 0.9858 0.9859217 0.9859217 9 / 10 
4 188 0.9853782 0.9850 0.985378 0.9853 0.9853297 0.9853782 8 / 10 
5 187 0.9846881 0.9844 0.984688 0.9847 0.9844495 0.9846881 8 / 10 
6 186 0.9841755 0.9836 0.984176 0.9838 0.9841755 0.9841755 9 / 10 
7 185 0.9835049 0.9831 0.983505 0.9835 0.9834363 0.9835049 8 / 10 
8 184 0.9829940 0.9823 0.982994 0.9830 0.9826980 0.9829940 9 / 10 
9 183 0.9822557 0.9819 0.982256 0.9822 0.9822062 0.9822557 7 / 10 

10 182 0.9815183 0.9811 0.981518 0.9815 0.9815183 0.9815183 9 / 10 
11 181 0.9810271 0.9802 0.981027 0.9807 0.9810271 0.9810271 8 / 10 
12 180 0.9802902 0.9797 0.980290 0.9803 0.9802902 0.9802902 9 / 10 
13 179 0.9795047 0.9791 0.979505 0.9795 0.9795047 0.9795047 9 / 10 
14 178 0.9784003 0.9783 0.978400 0.9784 0.9782085 0.9784003 7 / 10 
15 177 0.9775953 0.9772 0.977474 0.9776 0.9772429 0.9775953 8 / 10 
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16 176 0.9766905 0.9764 0.976690 0.9765 0.9766905 0.9766905 7 / 10 
17 175 0.9757079 0.9753 0.975708 0.9757 0.9757079 0.9757079 9 / 10 
18 174 0.9749261 0.9744 0.974788 0.9749 0.9746901 0.9749261 6 / 10 
19 173 0.9738268 0.9738 0.973827 0.9738 0.9737580 0.9738268 8 / 10 
20 172 0.9730266 0.9727 0.973027 0.9730 0.9730266 0.9730266 9 / 10 
21 171 0.9719295 0.9719 0.971929 0.9719 0.9719295 0.9719295 7 / 10 
22 170 0.9707604 0.9708 0.970760 0.9708 0.9707604 0.9707604 9 / 10 
23 169 0.9692910 0.9692 0.969291 0.9693 0.9692910 0.9692910 8 / 10 
24 168 0.9681251 0.9681 0.968125 0.9681 0.9681251 0.9681251 8 / 10 
25 167 0.9663351 0.9663 0.966335 0.9663 0.9663351 0.9663351 8 / 10 
26 166 0.9650416 0.9650 0.965042 0.9650 0.9650416 0.9650416 9 / 10 
27 165 0.9637118 0.9637 0.963712 0.9637 0.9637118 0.9637118 7 / 10 
28 164 0.9624219 0.9624 0.962422 0.9624 0.9624219 0.9624219 7 / 10 
29 163 0.9606424 0.9606 0.959980 0.9606 0.9606424 0.9606424 8 / 10 
30 162 0.9591884 0.9591 0.958205 0.9592 0.9591884 0.9591884 6 / 10 
31 161 0.9580346 0.9580 0.956922 0.9580 0.9580346 0.9580346 7 / 10 
32 160 0.9557144 0.9557 0.955604 0.9557 0.9557144 0.9557144 6 / 10 
33 159 0.9545648 0.9546 0.954325 0.9546 0.9545648 0.9545648 8 / 10 

Table 7. Comparison of CPLEX, meta-heuristics and HPGA (C=130) 

In order to calculate the improvement of reliability for existing studies and the suggested 
algorithm, a maximum possible improvement (MPI) was obtained by Eqs. from (22) to (25) 
and is shown in Fig. 8. 
 

 1( ) 100
1

HPGA GA

GA

R R
L GA

R
−= ×

−
 (22) 

 2( ) 100
1

HPGA TS

TS

R R
L TS

R
−= ×

−
 (23) 

 3( ) 100
1

HPGA ACO

ACO

R R
L ACO

R
−= ×

−
 (24) 

 4( ) 100
1

HPGA IA

IA

R R
L IA

R
−= ×

−
 (25) 

1( )L GA : MPI(%) of GA results 
2( )L TS : MPI(%) of TS results 
3( )L ACO : MPI(%) of ACO results 
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4( )L IA : MPI(%) of IA results 

HPGAR : system reliability by HPGA 

GAR : system reliability by GA 

TSR : system reliability by TS 

ACOR : system reliability by ACO 

IAR : system reliability by IA 

 
Fig. 8. MPI 

The suggested algorithm improved system reliability better than existing studies except for 
TS in the 1st~20th test problems in which the weight was heavy. In addition, HPGA found 
superior system reliability compared to TS in the 29th~32th test problems in which the 
weight was light. The other solutions are almost the same. 

Through the experiment, this study found that the performance of HPGA is superior to the 
existing meta-heuristics. In order to evaluate the performance of HPGA in large-scale 
problems, 5 more problems are presented through connecting the system data of testing 
problem 1 (C=190, W=191) in series systems. The large-scale problems consist of 28 
subsystems (C=260, W=382), 42 subsystems (C=390, W=573), 56 subsystems (C=520, 
W=764), 70 subsystems (C=650, W=955) in series systems. After 10 runs using HPGA, the 
results compared with the optimal solution by CPLEX are shown in Table 8. 
 

No. Number of 
subsystems C W CPLEX 

HPGA (10 runs) 
Max S.D. Number of optimal 

1 14 130 191 0.9868110 0.9868110 0.000021 8 / 10 
2 28 260 382 0.9740720 0.9740720 0.000147 6 / 10 
3 42 390 573 0.9612374 0.9612374 0.000564 4 / 10 
4 56 520 764 0.9488162 0.9488162 0.001095 1 / 10 
5 70 650 955 0.9370413 0.9370413 0.001732 1 / 10 

Table 8. Experimental results of the large-scale problems 
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The suggested algorithm presented optimal solutions in all large-scale problems. For the 
experimental results of large-scale problems 1~4, the suggested algorithm showed the 
optimal solutions 4~8 times out of 10 runs. The optimal solution to large-scale problem 5 
was obtained by HPGA in 1 out of 10 runs. 

5.2 The reliability allocation problem with component choices (RAPCC) 

In order to evaluate the performance of the suggested algorithm for the reliability allocation 
problem with multiple-choice, this study performed experiments by using the Nahas & 
Nourelfath (2005) and the Kim et al. (2008) examples in series. The Nahas & Nourelfath 
(2005) examples consist of four examples: examples 1, 2, and 3 consist of 15 subsystems with 
60, 80, and 100 components, respectively, and example 4 consists of 25 subsystems with 166 
components. The budgets are $1,000, $900, $1,000, and $1,400, respectively. Examples by the 
Kim et al. (2008) consist of two large-scale examples (examples 5 and 6). Large-scale 
examples are presented through connecting the system data of example 4. Examples 5 and 6 
consist of 100 and 200 subsystems with budgets of $7,200~$7,650 and $14,400~$15,100, 
respectively. 

To use CPLEX, this study performed an additional step for transforming the nonlinear 
objective function into the linear function as shown in Eq. (26). 

 Maximize  
1 1 11

ln ln ln
n m n m

S ij ij ij ij
j i ji

R r x x r
= = ==

    = ⋅ = ⋅     
 ∏  (26) 

The experimental results of examples 1~4 including component structure, reliability, and 
cost by using CPLEX and a hybrid parallel genetic algorithm are shown in Table 9. 

 

No. Number of 
subsystems 

Number of 
components budget 

CPLEX HPGA 
Reliability Component structure Reliability Cost 

1 15 60 1,000 0.857054 3-4-5-2-3-3-2-3- 
2-2-2-3-4-3-2 0.857054 990 

2 15 80 900 0.915042 3-3-3-4-2-3-3-2- 
4-1-2-3-4-3-1 0.915042 900 

3 15 100 1,000 0.965134 3-3-4-4-3-3-2-2- 
3-2-2-4-4-4-2 0.965134 995 

4 25 166 1,400 0.865439 

3-3-3-5-2-3-2-2-3-1-2-3-4- 
4-1-2-3-3-4-2-3-2-2-3-1 0.865439 1,395 

3-3-3-5-2-3-2-2-3-1-2-3-4- 
3-1-3-3-3-4-2-3-2-2-3-1 0.865439 1,395 

2-3-3-4-2-3-2-2-3-1-2-3-3- 
4-1-3-3-3-5-3-3-2-2-3-1 0.865439 1,400 

Table 9. Experimental results of examples 1~4 by using CPLEX and HPGA 

As found in Table 9, the suggested algorithm presented the optimal solutions in examples 14 
and obtained a new optimal solution (3-3-3-5-2-3-2-2-3-1-2-3-4-3-1-3-3-3-4-2-3-2-2-3-1) in 
example 4. 
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After 10 runs using HPGA in examples 14, the experimental results including maximum, 
average and standard deviation values were compared with existing meta-heuristics such as 
ACO (Nahas & Nourelfath, 2005), SA (Kim et al., 2004), and TS (Kim et al., 2008). The 
comparison of meta-heuristics and the suggested algorithm is shown in Table 10. 
 

No. 
ACO SA TS HPGA 

(This study) 

Max Ave. S.D. Max Ave. S.D. Max Ave. S.D. Max Ave. S.D. 

1 0.85705 0.85705 0 0.85705 0.85705 0 0.857054 0.857054 0 0.857054 0.857054 0 

2 0.91504 0.91504 0 0.91504 0.91504 0 0.915042 0.915042 0 0.915042 0.915042 0 

3 0.96512 0.96439 0.00050 0.96513 0.96503 0.00033 0.965134 0.965134 0 0.965134 0.965134 0 

4 0.86543 0.86491 0.00038 0.86543 0.86536 0.00025 0.865439 0.865439 0 0.865439 0.865439 0 

Table 10. Experimental results of examples 1~4 by using CPLEX and HPGA 

The suggested algorithm in examples 14 generated the optimal solutions without standard 
deviation and showed the same or superior solution compared to meta-heuristics. 

In order to evaluate the performance of HPGA in large-scale problems, this study performed 
experiments by using examples in series as suggested by the Kim et al. (2008). After 10 runs 
using CPLEX and HPGA in examples 5 and 6, experimental results including maximum, 
standard deviation values, and maximum possible improvement (MPI) compared with 
existing meta-heuristics such as simulated annealing, tabu search, and reoptimization 
procedure by the Kim et al. (2008) are shown in Tables 11 and 12. The MPI was obtained by 
Eq. (27). 

 ( )% 100
(1 )

Max CPLEX
MPI

CPLEX
−= ×

−
 (27) 

 

Budget CPLEX 
SA TS HPGA (This Study) 

Max S.D. %MPI Max S.D. %MPI Max S.D. %MPI 

7,200 0.895758 0.895575 0.001342 -0.1756 0.895758 0.000312 0 0.895758 0.001017 0 

7,250 0.900167 0.899438 0.001050 -0.7302 0.899984 0.000305 -0.1833 0.899984 0.000236 -0.1833 

7,300 0.904599 0.903866 0.001027 -0.7683 0.904414 0.000390 -0.1939 0.904599 0.000529 0 

7,350 0.908866 0.908405 0.001202 -0.5058 0.908866 0.000480 0 0.908866 0.000424 0 

7,400 0.913154 0.912601 0.000499 -0.6368 0.913064 0.000337 -0.1036 0.913114 0.000107 -0.0461 

7,450 0.917184 0.916815 0.000510 -0.4456 0.917093 0.000494 -0.1099 0.917184 0.000229 0 

7,500 0.921141 0.920770 0.000743 -0.4705 0.921141 0.000365 0 0.921141 0.000156 0 

7,550 0.925023 0.925023 0.000590 0 0.925023 0.000502 0 0.925023 0.000172 0 

7,600 0.929013 0.928269 0.000696 -1.0481 0.929013 0.000445 0 0.929013 0 0 

7,650 0.931526 0.931526 0.000388 0 0.931526 0 0 0.931526 0 0 

Table 11. Experimental results of example 5 by using CPLEX and HPGA (10 runs) 
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Budget CPLEX 
TS TS+SA Reoptimization HPGA (This Study) 

Max S.D. %MPI Max S.D. %MPI Max S.D. %MPI 

14,400 0.802546 0.802218 0.000425 -0.1661 0.802218 0 -0.1661 0.802364 0.000110 -0.0922 

14,450 0.806496 0.806167 0.000396 -0.1700 0.806167 0 -0.1700 0.806251 0.000076 -0.1266 

14,500 0.810301 0.809890 0.000519 -0.2167 0.809970 0 -0.1745 0.810301 0.000094 0 

14,550 0.814290 0.813792 0.000352 -0.2682 0.813792 0 -0.2682 0.813792 0.000182 -0.2682 

14,600 0.818299 0.817388 0.000391 -0.5014 0.817798 0.000053 -0.2757 0.817984 0.000003 -0.1734 

14,650 0.822160 0.821656 0.000891 -0.2834 0.821656 0 -0.2834 0.822160 0 0 

14,700 0.826207 0.824787 0.000709 -0.8171 0.825364 0.000142 -0.4851 0.825774 0.000325 -0.2491 

14,750 0.830105 0.829263 0.000815 -0.4956 0.829427 0.000026 -0.3991 0.830105 0.000407 0 

14,800 0.833851 0.833428 0.000891 -0.2546 0.833510 0.000026 -0.2052 0.833604 0.000450 -0.1487 

14,850 0.837614 0.837448 0.000824 -0.1022 0.837614 0 0 0.837614 0 0 

14,900 0.841310 0.840805 0.000786 -0.3182 0.841310 0.000107 0 0.841310 0 0 

14,950 0.844856 0.844009 0.000506 -0.5459 0.844856 0.000215 0 0.844856 0 0 

15,000 0.848500 0.848332 0.000610 -0.1109 0.848500 0.000027 0 0.848500 0 0 

15,050 0.852076 0.851991 0.000722 -0.0575 0.852076 0 0 0.852076 0 0 

15,100 0.855751 0.855582 0.000679 -0.1172 0.855751 0 0 0.855751 0 0 

Table 12. Experimental results of example 6 by using CPLEX and HPGA (10 runs) 

As shown in Table 11, the result of SA and TS gave the optimal solution 2 and 6 times out of 
the 10 cases, respectively. The suggested algorithm found the optimal solution 8 times for 
the same cases and it showed the same or superior MPI compared to that of SA and TS. As 
the results in Table 12 show that, when compared with TS and the reoptimization procedure 
(TS+SA), the suggested algorithm gave the optimal solution 9 times out of the 15 cases and 
showed the same or superior MPI than TS and the reoptimization procedure (TS+SA). This 
is because the suggested algorithm could parallelly evolve by operating several sub-
populations and improve the solution through swap and 2-opt heuristics. 

Throughout the experiment, this study found that performance of HPGA is superior to 
existing meta-heuristics. This study has generated one more example, example 7, which is 
presented through connecting the system data of example 4 in series. Example 7 consists of 
1,000 subsystems with $90,000$99,000 budgets. After 10 runs using CPLEX and HPGA in 
example 7, the experimental results including the maximum, standard deviation values, and 
maximum possible improvement (MPI) are shown in Table 13. 
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Budget CPLEX 
HPGA 

Max S.D. %MPI 
90,000 0.831082 0.830757 0.000681 -0.1924 
91,000 0.847706 0.846918 0.000594 -0.5174 
92,000 0.860003 0.859647 0.000317 -0.2543 
93,000 0.871659 0.871516 0.000183 -0.2228 
94,000 0.883369 0.883275 0.000262 -0.0806 
95,000 0.895226 0.895185 0.000208 -0.0391 
96,000 0.904832 0.904832 0.000079 0 
97,000 0.913836 0.913791 0.000055 -0.0522 
98,000 0.920716 0.920716 0.000016 0 
99,000 0.924869 0.924869 0 0 

Table 13. Experimental results of example 7 by using CPLEX and HPGA (10 runs) 

As shown in Table 13, the suggested algorithm presented the optimal solution in 3 times out 
of 10 cases. While the budget increased, the suggested algorithm found the near-optimal 
solution. 

6. Conclusions 

This study suggested mathematical programming models and a hybrid parallel genetic 
algorithm for reliability optimization with resource constraints. The experimental results 
compared HPGA with existing meta-heuristics and CPLEX, and evaluated the performance 
of the suggested algorithm. 

The suggested algorithm presented superior solutions to all problems (including large-scale 
problems) and found that the performance is superior to existing meta-heuristics. This is 
because the suggested algorithm could paratactically evolve by operating several sub-
populations and improve the solution through swap, 2-opt, and interchange (except for 
RAPCC) heuristics. 

The suggested algorithm would be able to be applied to system design with a reliability goal 
with resource constraints for large scale reliability optimization problems. 
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1. Introduction  

The electric power industry is under deregulation in response to changes in the law, 
technology, market and competition. The aim of deregulation is to optimize the system 
welfare by introducing competitive environment, mainly among the power producers. 
Developing fair and transparent power flow and loss allocation method has been an active 
topic of research, with many transactions taking place at any time.  

In the last decades, several power flow tracing algorithms have been proposed in literature 
mainly from physical flow approach (Bialek & Tam, 1996; Wu et al., 2000; Sulaiman et al., 
2008; Pantos et al., 2005) and circuit theory approach (Teng, 2005; Wen-Chen et al., 2004; 
Mustafa et al., 2008a; Lo & Alturki, 2006). The concept of proportional sharing principle has 
been proposed by (Bialek & Tam, 1996). This approach has a drawback in handling the 
transmission losses by introducing fictitious nodes on every lossy branch which will causes 
the expansion of distribution matrix. The graph method was proposed by (Wu et al., 2000) 
where the method is basically using the searching technique of the paths and routes from a 
particular generator to a particular load. The adaptation of the methods from (Bialek & Tam, 
1996) and (Wu et al., 2000) has been proposed in (Sulaiman et al., 2008) for tracing the power 
and loss in deregulated power system. However, the main disadvantage of this approach is 
it cannot be applied for the circular power flow system. Modification of (Bialek & Tam, 
1996) has been done in (Pantos et al., 2005) to trace the real and reactive power by 
introducing decoupled power flow to overcome the lossy system problem. This method 
introduces equivalent model of a line for reactive power tracing. The effects of line charging 
to original generators and loads are integrated. Nevertheless, the actual power contribution 
from generators to loads has been ignored.    

The uses of circuit theory in power tracing have been introduced in (Teng, 2005; Wen-Chen 
et al., 2004; Mustafa et al., 2008a; Lo & Alturki, 2006). In (Teng, 2005), a method that applies 
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superposition theorem to trace the power flow and loss in deregulated system has been 
proposed. The integration of Y-bus matrix with the equivalent impedance of load bus is 
performed before this integration matrix is inversed into Z-bus matrix. Then, the 
superposition theorem is applied so that the current injection can be allocated to individual 
generators. The method that uses basic circuit theory and partitioning the Y-bus matrix to 
decompose the voltage of load buses as function of the generators’ voltage has been 
proposed in (Wen-Chen et al., 2004). This partitioning technique also has been extended in 
(Mustafa et al., 2008; Lo & Altuki, 2006). The method from (Wen-Chen et al., 2004) is re-
evaluated to represent each load current as function of generators’ current and load voltages 
named as modified nodal equations (MNE) (Mustafa et al., 2008a). However, there are some 
conditions where the tracing at certain lines or loads could be greater than the power 
produced by its generation. In (Lo & Alturki, 2006), partitioned Y-bus is applied to design a 
voltage participation index (VPI) together with the concept of current adjustment factors 
(CAF) for the reactive power tracing algorithm. CAF is the transformation of complex 
matrix coefficients for adjustment of non-linearity of the network due to real and imaginary 
factor interactions. The problem of CAF is it will be very complex if implemented for large 
system.  

In related work based on machine learning, an application of Artificial Neural Network 
(ANN) into reactive power tracing has been proposed in (Mustafa et al., 2008b). The MNE 
technique has been utilized as a teacher to train the ANN model. However, ANN is time 
consuming in the training process. The hybrid of Genetic Algorithm (GA) and Least Squares 
Support Vector Machine (LS-SVM) to trace the transmission loss has been proposed in 
(Mustafa e al., 2011). The improvement from (Bialek & Tam, 1996) has been done in tracing 
the transmission losses. It then is used as a teacher to train the GA-SVM model. However, 
same with (Bialek & Tam, 1996; Wu et al., 2000; Sulaiman et al., 2008), the technique cannot 
handle the system with circular or loop flow. 

This paper basically proposes the same hybrid technique as proposed in (Mustafa e al., 
2011), where the GA-SVM is utilized to trace the real and reactive power from individual 
generators to loads simultaneously. GA is utilized as an optimizer to find the optimal values 
of LS-SVM hyper-parameters which are embedded in LS-SVM model. The supervised 
learning paradigm is used to train the LS-SVM model where the Superposition method 
(Teng, 2005) is utilized as a teacher. Based on converged load flow and followed by 
superposition method for power tracing procedure, the description of input and output of 
the training data are created. The GA-SVM model will learn to identify which generators are 
supplying to which loads in term of real and reactive power in concurrently. In this paper, 
IEEE 14 bus system is used to illustrate the effectiveness of proposed method compared to 
that of the superposition method.      

2. Superposition method as a teacher 

Superposition method was proposed by (Teng, 2005) where it is based on basic circuit 
theories including KCL, KVL and superposition law. Same with other tracing methods, this 
method also requires obtaining the solved load flow prior the tracing can be applied. After 
converged power flow solution, the power tracing is started by obtaining the contribution of 
voltages and currents which are using the superposition law concept, equivalent impedance 
and equivalent current injection. Generators in the system are treated as equivalent current 
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injection which injects the currents into the system by using the following expressions 
(Teng, 2005):   

 ( ), , ,n G n G n GS P jQ= +  (1) 
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where n is number of generator, Vn,G is the generator bus voltage, Pn,G is the real power and 
Qn,G is the reactive power for the generator bus. 

For a load bus i, the corresponding equivalent impedance, Zi,L can be obtained using the 
following expression: 
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where Vi,L, Ii,L and Si,L = [Pi,L-j(Qi,L-Qc)] are the voltage, current and apparent power of load 
bus i including the effect of injected MVAR that obtained from the converged load flow 
solution respectively. The equivalent impedance for each load now is integrated into Y-bus 
matrix where the vector of bus voltages, VBUS can be obtained as follows: 

 VBUS=ZMATRIXIG (4) 

where IG and ZMATRIX are the bus current injection vector and impedance matrix including 
the effects of the equivalent impedance, respectively. 

By using the superposition law, the voltage contribution of each generator to each bus can 
be obtained as follows: 
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where the effect of each current injection into the system is taken one by one. From (5), 
voltage at bus i contributed by generator bus n (∆vin) and the voltage of bus i contributed by 
all generator buses can be written as follow: 
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The next step is tracing the current in the system. By referring to Fig. 1, the line current from 
bus i to bus j, ∆iijn and from bus j to bus i, ∆ijin which are corresponding to the voltage 
contribution of generator bus n, can be obtained using the following equations: 

   ( ) ( ) ( )* / 2 *n n n n
ij i j ij ij ii v v g jb jc vΔ = Δ − Δ + + Δ  (8) 

   ( ) ( ) ( )* / 2 *n n n n
ji i i ij ij ji v v g jb jc vΔ = Δ − Δ + + Δ  (9) 

where (gij + jbij) is the line admittance from bus i to j and c/2 is the line charging susceptance. 

 
Fig. 1. π-model of transmission line 

By referring to (Teng, 2005), the bus voltage can be considered as the force or pressure, 
which is pushing the current contributed by different generators through the line. Therefore, 
with a proper manipulation, the power flow contributed by the generator bus n and total 
power flow can be calculated as follow:   
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where ∆sijn is the line power flow produced by generator bus n from bus i to bus j. 

To obtain the contribution of individual generator to loads, the same procedure is applied. 
The current injection from generator n into load bus i, ∆ii,Ln and the total current injection, Ii,L 
can be calculated as follow: 
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Since the voltage and current contributions of individual generator have been identified, the 
power of load bus i contributed by generator bus n, ∆si,Ln and the total power of load bus, Si,L 
can be accounted as follow: 

 ( )*
, ,

n n
i L i i Ls V iΔ = Δ  (14) 
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Vector ∆si,Ln is used as a target in the training process of proposed hybrid GA-SVM 
technique. 

3. Function estimation using LS-SVM  

Support vector machine (SVM) is known as a powerful methodology for solving problems 
in nonlinear classification, function estimation and density estimation. SVM has been 
introduced within the context of statistical learning theory and structural risk minimization. 
Least squares support vector machine (LS-SVM) is reformulations from standard SVM 
(Vapnik, 1995) which lead to solving linear Karush-Kuhn-Tucker (KKT) systems. LS-SVM is 
closely related to regularization networks and Gaussian processes but additionally 
emphasizes and exploits primal-dual interpretations (Espinoza et al., 2006).   

In LS-SVM function estimation, the standard framework is based on a primal-dual 

formulation. Given N dataset{ } 1, N
i i i

x y = , the goal is to estimate a model of the form:  

 ( ) ( )T
iy x w x b eϕ= + +  (16) 

where ,nx R y R∈ ∈ and (.) : hnnR Rϕ → is a mapping to a high dimensional feature space. 
The following optimization problem is formulated (Suykens et al., 2002): 
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such that ( )T
i i iy w x b eϕ= + + , i=1,…,N. 

With the application of Mercer’s theorem (Vapnik, 1995) for the kernel matrix Ω as 
( ), ( ) ( ),T

ij i j i jK x x x xϕ ϕΩ = =  i, j=1,..,N, it is not required to compute explicitly the nonlinear 
mapping φ(.) as this is done implicitly through the use of positive definite kernel functions K 
(Espinoza et al., 2006). From the Lagrange function (Suykens et al., 2002): 
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where βi are Lagrange multipliers. Differentiating (18) with w, b, ei and βi, the conditions for 
optimality can be described as follow (Suykens et al., 2002): 
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By elimination of w and ei, the following linear system is obtained (Suykens et al., 2002): 
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with y =[y1,…,yN]T, β=[ β 1,…, β N]T. The resulting LS-SVM model in dual space becomes: 
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Usually, the training of the LS-SVM model involves an optimal selection of kernel 
parameters and regularization parameter. For this paper, the RBF Kernel is used which is 
expressed as: 
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Note that σ2 is a parameter associated with RBF function which has to be tuned. There is no 
doubt that the efficient performance of LS-SVM model involves an optimal selection of 
kernel parameter, σ2 and regularization parameter, γ. In (Espinoza et al., 2007), these 
parameters selection are tuned via cross-validation technique. Even though this technique 
seemed to be simple, the forecasting performance by using this technique is at average 
accuracy (Lean et al., 2009). Thus by using GA as an optimizer, a more accurate result is 
expected. In addition, GA is known as a powerful stochastic search and optimization 
technique. The hybridization of GA and LS-SVM should gives better accuracy and good 
generalization, especially in real and reactive power tracing problem. 

4. Genetic algorithm 

Genetic Algorithm (GA) is known as a subset of evolutionary algorithms that model 
biological processes which is influenced by the environmental factor to solve various 
numerical optimization problems. GA allows a population composed of many individuals 
or called chromosomes to evolve under specified rules to a state that maximizes the fitness 
or minimizes the cost functions. Traditionally, GA is utilizing binary numbers as a 
representation, but the using of floating and real numbers as representation are becoming 
popular lately. This paper will focuses on the technique that using floating numbers which 
has been developed by (R. L & S. A. Haupt, 1998).  
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If the chromosome has Npar parameters (an N-dimensional optimization problem) given by 
p1, p2, …, pNpar, then the single chromosome is written as an array with 1 x Npar  elements as 
follows: 

 1 2 3[ , , ,....., ]Nparchromosome p p p p=  (23) 

GA does not work with a single string but with a population of strings, which evolves 
iteratively by generating new individuals taking the place of their parents. Normally, the 
initial population is generated at random. The performance of each string is evaluated 
according to its fitness. Fitness is used to provide a measure of how individuals have 
performed in the problem domain. The choice of objective and fitness function is proposed 
in the next section.  

With an initial population of individuals and evaluated through its fitness, the operators of 
GA begin to generate a new and improved population from the old one. A simple GA 
consists of three basic operations: selection, crossover and mutation. Selection determines 
which individuals are chosen for crossover and a process in which individual chromosomes 
are copied according to their fitness. Parents are selected according to their fitness 
performance and this can be done through several methods. For this paper, roulette wheel 
selection method is used (Goldberg, 1989).   

Crossover is a process after the parents chromosomes are selected from roulette wheel 
method. It is a process that each individual will exchange information to create new 
structure of chromosome called offspring. It begins by randomly selecting a parameter in 
the first pair of parents to be crossover at point: 

 { }parround random Nα = ∗  (24) 

Let 

 1 1[ ,.., ,..., ]m m mNparparent p p pα=  (25) 

 2 1[ ,..., ,..., ]d d dNparparent p p pα=  (26) 

where m and d subscripts discriminate between the mom and dad parent. Then the selected 
parameters are combined to form new parameters that will appear in the offspring, as 
follow: 

 1 [ ]new m m dp p p pα α αβ= − −  (27) 

 2 [ ]new d m dp p p pα α αβ= + −  (28) 

where β is also a random value between 0 and 1. In this paper, small modification of 
extrapolation and crossover methods which has been proposed in (R. L & S. A. Haupt, 
1998) was done in equations (29) and (30) to obtain the offsprings, as follow (Sulaiman et 
al., 2010): 

 1 1 1[ ,..., ,..., ]m new mNparoffspring p p p=  (29) 



 
Real-World Applications of Genetic Algorithms 

 

154 

 2 1 2[ ,..., ,..., ]d new dNparoffspring p p p=  (30) 

Although selection and crossover are applied to chromosome in each generation to obtain a 
new set for better solutions, occasionally they may become overzealous and lose some 
useful information. To protect these irrecoverable loss or premature convergence occur, 
mutation is applied. Mutation is random alteration of parameters with small probability 
called probability of mutation (0-10%). Multiplying the mutation rate by the total number of 
parameters gives the number of parameters that should be mutated. Next, random numbers 
are chosen to select of the row and columns of the parameters to be mutated. A mutated 
parameter is replaced by a new random parameter.  

5. GA-SVM for power tracing  

In LS-SVM function estimation, the standard framework is based on a primal-dual 
formulation as explained in section 3. Usually, the training of the LS-SVM model involves 
an optimal selection of kernel parameters and regularization parameter. In order to find the 
optimal value of regularization parameter, γ and Kernel RBF parameter, σ2, the hybrid 
genetic algorithm (GA) with LS-SVM is proposed. Each chromosome consists of two 
parameters representing γ and σ2 in continuous floating numbers that generated randomly. 
Then each variable are concatenated to construct multivariable string. Fig. 2 shows the 
example of the chromosome which is can be said as the candidate for solution; for this case 
is γ and σ2. The main objective is to find the best combination of these two variables that will 
produces good generalization of LS-SVM model. The evaluation process is done by using 
these values in LS-SVM model for training and testing to obtain the mean squares error 
(MSE) between the output and the target that have been created. The objective function is 
the value of MSE to be minimized, H as follows:  

 ( )minH MSE=  (31) 

After evaluating each chromosome, the objective function in equation (31) is transformed 
and normalized to a fitness scheme to be maximized as follows: 

 1
1

f
H

=
+

 (32) 

The GA properties to find the optimal γ and σ2 are as follow:  

• Selection: roulette wheel 
• Crossover probability = 0.9 
• Mutation probability = 0.1 
• Population = 20 
• Maximum iteration = 30 

The proposed tracing method is elaborated by designing an appropriate GA-SVM model 
using LS-SVMlab Toolbox (Pelkmans et al., 2002) for the modified IEEE 14-bus system as 
shown in Fig. 3. This system consists of 14 buses and 20 transmission lines. The modification 
has been made for this test system. Initially, the synchronous condenser at bus 3, 4 and 5 are 
only supporting the reactive power supply for the system. For this case, these synchronous 
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condensers are treated and work as normal generators to alleviate the real power support at 
generator bus 1. In addition, the modification is made to see the performance of design GA-
SVM model for the system with more than two generators. The input samples for training is 
assembled using daily load curve and performing load flow analysis for every hour of load 
demand using MATPOWER software package (Zimmerman et al., 2011). Daily load curves 
for every bus for real and reactive power are shown in Figs. 4 and 5 respectively. Input data 
and target data for real and reactive power allocation problem for GA-SVM model are 
tabulated in Table 1.  The flow of GA-SVM is depicted in Fig. 6. 

 

 
Fig. 2. Chromosome for solution 

 

 
Fig. 3. Modified IEEE-14 bus system 
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Fig. 4. Daily load curve for real power 

 
Fig. 5. Daily load curve for reactive power 

 
Input and 

Output Description 

I1 to I11 Real load demand (Pd2, Pd3, Pd4, Pd6, Pd7,Pd9, Pd10, Pd11, Pd12, Pd13, Pd14) 

I12 to I22 
Reactive load demand (Qd2, Qd3, Qd4, Qd6, Qd7,Qd9, Qd10, Qd11, Qd12, Qd13, 

Qd14) 

I23 to I26 Scheduled real power generation (PG2 to PG5) 

O1 to O140 5     generators' contributions to all buses 

Table 1. Description of inputs and outputs of the GA-SVM model 
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Fig. 6. Flow of proposed GA-SVM 
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6. Results and discussion 

6.1 Training, validation and testing processes 

After the input and target of training data have been created, the next step is to divide the 
data (D and T) up to training, validation and testing subsets. In this case, one week of load 
profiles data is used for these processes. 48 samples of data (Monday and Sunday) are used 
for the training, 72 samples (Tuesday, Wednesday and Saturday) for validation and 48 
samples (Thursday and Friday) for testing out of one week (168 hours).    

The values of regularization parameter, γ and RBF Kernel, σ2 are decided through the hybrid 
GA-SVM model that has been discussed previously. From the simulation of GA-SVM 
model, the final value γ of is set to 913.7632 and σ2 is set to 9.9813 yields reasonable accuracy 
of the output of the predictive model that has been designed. The mean square error (MSE) 
for validation is 3.8322 x 10-5 and for validation is 5.3981 x 10-5 which shows that the 
estimation process by GA-SVM model is successful. The mean squares error (MSE) versus 
iteration for GA-SVM model is shown in Fig. 7.  

 
Fig. 7. MSE versus Iteration 

6.2 Pre-testing 

Once the GA-SVM model has been trained in MATLAB based, the pre-testing process is 
done where the entire sample of data is used to simulate the model. The obtained result 
from the trained model then is evaluated with the linear regression analysis. The regression 
analysis that refers to Generator 2 to real load bus 10 is shown in Fig. 8. The correlation 
coefficient, (R) for this particular real power allocation is equal to one indicates the perfect 
correlation between trained GA-SVM with Superposition method results. The MSE value for 
pre-testing is 4.5401 x 10-5.  
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Fig. 8. Regression analysis between hybrid GA-SVM output and corresponding target 

6.3 Simulation 

The case scenario is that real and reactive power at each load is assumed to increase by 10% 
from hours 1 to 12 and 20 to 24; and to decrease 15% from hours 13 to 19 from the nominal 
trained pattern. This also assumed that all generators increase and decrease their production 
proportionally according to the variation of demands. This simulation aims to observe the 
effect of increment and decrement of the schedule in load demands. Figs. 9 and 10 show the 
results of generators‘ shares at load bus 2 for real and reactive power respectively within 24 
hours. The GA-SVM output is indicated by solid lines while the Superposition method is 
indicated by the points ‘o’. From this result, it can be observed that the GA-SVM model can 
allocates the power flow from individual generators to loads with the same pattern of 
Superposition method’s output.  

Contributions of real and reactive power from individual generators to loads on hours 14 
out of 24 hours using proposed GA-SVM model and Superposition method are tabulated in 
Tables 2 and 3 respectively. The results obtained by GA-SVM are compared well with the 
results from Superposition method. The largest discrepency between generators‘ share of 
real and reactive power allocation using GA-SVM and Superposition method are 0.0232 MW 
at load bus 3 for generator 1 and 0.0187 MVar at load bus 3 for generator 3 respectively. It 
can be seen that the results obtained utilizing GA-SVM was in conformity with the actual 
load demand from load flow study although there were small variations in the predicted 
results. However, the prediction of GA-SVM model was successful since it ables to allocate 
the ouput of power allocation for new input data with more that 99% accuracy.    
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Fig. 9. Real power flow allocation from individual generators to load bus 2 within 24 hours 
using GA-SVM and Superposition method 

 

 
Fig. 10. Reactive power flow allocation from individual generators to load bus 2 within 24 
hours using GA-SVM and Superposition method 



Hybrid Genetic Algorithm-Support Vector 
Machine Technique for Power Tracing in Deregulated Power Systems 

 

161 

Bus\Gen 
 

G1 G2 G3 G4 G5 Total From loadflow 
P Q P Q P Q P Q P Q P Q P Q 

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 32.9 -7.1 8.9 11.8 0.7 11.0 -0.7 6.3 0.4 4.1 42.3 26.2 42.3 26.2 
3 78.9 -18.5 21.4 27.7 12.0 34.4 -0.4 16.4 2.0 10.6 113.9 70.6 113.9 70.6 
4 9.2 -2.0 2.3 3.2 0.4 3.2 1.2 2.7 0.5 1.3 13.5 8.4 13.5 8.4 
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
6 42.6 -9.9 11.2 14.9 2.3 15.2 0.2 9.4 1.5 6.2 57.8 35.8 57.8 35.8 
7 22.8 -5.2 5.8 7.9 0.9 7.8 0.1 5.1 0.6 3.2 30.2 18.7 30.2 18.7 
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
9 24.9 -5.4 6.3 8.7 1.1 8.8 1.3 5.9 2.1 4.0 35.7 22.1 35.7 22.1 
10 8.4 -1.8 2.1 2.9 0.4 3.0 0.6 2.1 0.6 1.3 12.1 7.5 12.1 7.5 
11 8.3 -1.8 2.1 2.9 0.3 2.9 0.8 2.2 0.5 1.3 12.1 7.5 12.1 7.5 
12 8.2 -1.8 2.1 2.9 0.3 2.9 1.0 2.4 0.4 1.2 12.1 7.5 12.1 7.5 
13 8.2 -1.8 2.1 2.9 0.3 2.9 1.0 2.3 0.5 1.2 12.1 7.5 12.1 7.5 
14 12.4 -2.7 3.2 4.4 0.5 4.4 1.0 3.2 0.9 1.9 18.0 11.2 18.0 11.2 

Table 2. Analysis of generators’ contributions to loads on hours 14 using GA-SVM in MW 
and Mvar 

 

Bus\ 
Gen 

G1 G2 G3 G4 G5 Total From load 
flow 

P Q P Q P Q P Q P Q P Q P Q 
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 32.9 -7.1 8.9 11.8 0.7 11.0 -0.7 6.3 0.4 4.1 42.3 26.2 42.3 26.2 
3 78.9 -18.5 21.4 27.7 12.0 34.4 -0.4 16.4 2.0 10.6 113.9 70.6 113.9 70.6 
4 9.2 -2.0 2.3 3.2 0.4 3.2 1.2 2.7 0.5 1.3 13.5 8.4 13.5 8.4 
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
6 42.6 -9.8 11.1 14.9 2.3 15.2 0.2 9.4 1.5 6.2 57.8 35.8 57.8 35.8 
7 22.7 -5.2 5.8 7.9 0.9 7.8 0.1 5.1 0.6 3.1 30.2 18.7 30.2 18.7 
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
9 24.9 -5.4 6.3 8.7 1.1 8.8 1.3 5.9 2.1 4.0 35.7 22.1 35.7 22.1 
10 8.4 -1.8 2.1 2.9 0.4 3.0 0.6 2.1 0.6 1.3 12.1 7.5 12.1 7.5 
11 8.3 -1.8 2.1 2.9 0.3 2.9 0.8 2.2 0.5 1.3 12.1 7.5 12.1 7.5 
12 8.2 -1.8 2.1 2.9 0.3 2.9 1.0 2.4 0.4 1.2 12.1 7.5 12.1 7.5 
13 8.2 -1.8 2.1 2.9 0.3 2.9 1.0 2.3 0.5 1.2 12.1 7.5 12.1 7.5 
14 12.4 -2.7 3.2 4.4 0.5 4.4 1.0 3.2 0.9 1.9 18.0 11.2 18.0 11.2 

Table 3. Analysis of generators’ contributions to loads on hours 14 using Superposition 
method in MW and MVar 
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In addition, the GA-SVM model computes the results within 750 ms whereas the 
Superpostion method took about 15 seconds to calculate the same real and rective power 
allocation in this simulation process. It would be worth to highlight that better computation 
time is crucial to improve the online application. For that, the GA-SVM provides the results 
in a faster manner with good accuracy.  

7. Conclusion  

The effectiveness of GA in determining the optimal values of hyper-parameters of LS-SVM 
to solve power tracing problem has been discussed in this paper. The developed hybrid GA-
SVM adopts real and reactive power tracing output determined by Superposition method as 
an estimator to train the model. The results show that GA-SVM gives good accuracy in 
predicting the generators’ output and compared well with Superposition method and load 
flow study. It is worth to highlight the proposed GA-SVM possesses the following feature: 

• The proposed method adopted Superposition method which based on well-known 
circuit theories as a teacher in training, validating and testing processes. 

• Power contributed by each generator may have positive and negative values indicate 
the direction of the power at load. 

• Since the Superposition method is used as a teacher, the tracing method can be utilized 
in circular or loop flow system. 

• The integration of GA and LS-SVM is straight forward and simple by utilizing the 
toolbox. 

• The proposed method provides the results in a faster manner with good accuracy.  

The proposed hybrid method can be utilized as generation forecasting management since 
the power produced by each generator has been traced and identified. Thus the 
transmission congestion problem can be easily avoided by proper generation scheduling 
which can be proposed and studied in the future works. 
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1. Introduction  

Evolution strategies, implemented in numerical codes, provided researchers with powerful 
optimization tools capable of finding optimal solutions for a variety of real-world problems. 
One of the most popular representatives of this family is the Genetic Algorithm (GA) 
(Barricelli, 1957), which has already been well recognized by the electromagnetic (EM) 
community (Haupt, 1995; Johnson & Rahmat-Samii, 1997; Weile & Michielssen, 1997; 
Rahmat-Samii & Michielssen, 1999; Haupt & Werner, 2007; Hoorfar, 2007). 

The most attractive features of GA, which are also intrinsic to other evolutionary algorithms 
(EA), are as follows: they can be applied given limited information about the problem, they 
do not require initial guesses, and they are able to produce non-intuitive solutions. These 
capabilities are provided thanks to a two-fold strategy that combines a stochastic global 
exploration and a local exploitation implemented in the form of an iterative modification 
and reproduction of already known individuals. The key to success here is the effective 
division of labour between both.  

Different EAs use different ways of balancing between the global and local search, based on 
the corresponding evolutionary model. A possible bottleneck here is that as soon as a new 
evolutionary model is introduced, one starts thinking in terms and within the bounds 
dictated by the analogy used, whereas these bounds are not absolute. They arise from 
specific tasks addressed by nature and therefore are inherently adapted to “boundary 
conditions” of specific scenarios. For instance, genetic strategy (Barricelli, 1957) is oriented 
towards a huge population of diverse individuals and almost unbound time frames. This 
strategy is rather slow but it aims at the ultimate goal of finding the very best of all possible 
solutions. This is in contrast to the ant colony (Colorni et al., 1991) and particle swarm 
(Kennedy & Eberhart, 1995) strategies that naturally serve finding a reasonably good 
solution during a limited timeframe. Nevertheless, in spite of the formal differences, all 
population-based EAs have much in common. They share the same goal of finding the 
global extremum among multiple local ones; they operate with subsets of trial solutions; 
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they rely on stochastic decision-making mechanisms; and they manipulate with the 
probability in order to guide the optimization process. The latter is controlled by the 
selected evolutionary model and evaluation principles, which define the chances of each 
individual to survive and reproduce in later generations. In addition, all EAs favour 
improvement of the whole population instead of promoting a single leader. This protects 
EAs from being trapped in local minima but handicaps the solution convergence rate and 
may cause stagnation at the later stage of optimization. This also makes sharp distinction 
between stochastic global techniques and deterministic local ones. Contrary to global ones, 
local search techniques use cost function gradients to govern the search process. Although 
criticized for being slow and dependent on the initial guess, local techniques are the only 
means of learning (Paszkowicz, 2006; Elmihoub et al., 2006). This makes them 
complementary to EAs and highlights the importance and strong potential of hybridized 
optimization algorithms, which combine elements of different evolutionary and 
deterministic models. Such algorithms have been strongly advocated in a number of papers, 
e.g. (Renders et al., 1996; Haupt & Chung, 2003; Elmihoub et al., 2006); nevertheless they are 
still rarely used in electromagnetics.  

In this chapter, we provide an insight into the general logic behind selection of the GA 
control parameters (Section 2), discuss the ways of boosting the algorithm efficiency 
(Section 3), and finally introduce a simple global-local hybrid GA capable of fast and reliable 
optimization of multi-parameter and multi-extremum functions (Section 4). The 
effectiveness of the proposed algorithm is demonstrated by numerical examples, namely: 
synthesis of linear antenna arrays with pencil-beam and flat-top patterns (Section 5).  

2. Global and local skills of genetic algorithms 

Genetic algorithm (same as any other population-based EA) can be compared with a two-
handed machine that uses one hand for random selection of individuals from a given pool 
of possible solutions and another hand for “cheating” the first one. The cheating is realized 
in the form of manual weighting the probability of a favourable event to happen. In 
particular, this is used to promote local search in the neighbourhood of previously found 
fittest solutions. Different evolutionary strategies incorporate different cheating capabilities 
whose strength is adjusted by varying algorithms control parameters. A few examples 
provided below illustrate how the GA skills can be adapted in the favour of either global or 
local search. Similar mechanisms can be easily identified in other EAs as well.  

The terminology used hereafter is borrowed from (Johson & Rahmat-Samii, 1997) whereas a 
recommended source for detailed information about the properties of GA operators is 
(Haupt & Haupt, 2004). 

In most cases, GA starts with a random seed of a finite number of individuals that constitute 
the initial population. At this moment any solution within the given design space can be 
selected and probability of this event to occur equals reverse of the pool volume (the total 
number of all possible solutions or combinations of parameters). The situation changes for 
the second and subsequent generations. Here, the number and locations of potential 
offspring are limited and determined by the previous population. This happens because 
offspring always preserve properties of parents (at least partially) and therefore they can 
occur in a limited number of locations dictated by their parents and the crossover/mutation 
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schemes used (Haupt & Haupt, 2004, Chapter 5). Thus, except for the initial step, one never 
deals with a complete pool of solutions. Instead, as soon as the initial population is 
randomly generated, one has access only to a subset which includes the current population 
and its potential offspring. During optimization this trial subset is gradually transformed in 
a way to include individuals from the most promising regions of the original design space.  

To reach this goal, the following sequence of operations is performed at each step of the 
optimization process. First, the trial subset is expanded by adding new individuals 
produced via reproduction of already known ones or randomly generated. Then, the quality 
of new individuals is evaluated and all individuals are ranked according to their cost 
function values. Finally, the worst individuals are discarded. Hopefully, each iteration 
moves search towards a region holding the global extremum, thanks to the continuous 
discarding of individuals which belong to less promising parts of the original design space.  

Convergence of this process depends on two factors: (i) the rule that defines interrelation 
between a population at hand and the corresponding trial subset, and (ii) the criteria used 
for estimating the individuals’ quality, which affects chances of individuals to survive and 
reproduce. To boost convergence, an additional weighting of individuals in populations can 
be introduced based on the cost function value or some additional criterion, e.g. taboo (Ji & 
Klinowski, 2009) or penalty (Paszkowicz, 2009) principles.  

The influence of different factors on the GA convergence rate is discussed below.  

The role of the population size seems obvious: the larger the size, the more uniform the 
exploration (or sampling) of the design space is provided. On the other hand, an oversized 
population slows convergence due to degeneracy of individuals that causes a strong 
offspring dispersion. This hinders local search because offspring often escape the parent 
solution’s basin. Therefore some optimal size always exists, although it depends on the 
landscape of the fitness function and properties of the GA operators used. Useful hints on 
this subject are given in (Linden, 1999).   

Two main GA operators are crossover and mutation. They define the size and structure of 
the trial subset accessible at each step. For instance, if a single-point crossover is 
implemented in a binary GA, all possible offspring are limited to a few choices that occur 
along the lines coinciding with the edges of a hyper rectangle with two parents on opposite 
vertices. The size of this hyper rectangle depends on the distance between parents, whereas 
sampling density is proportional to the number of crossing points. For instance, the number 
of potential offspring increases if a double-point crossover is used, whereas a uniform 
sampling can only be provided if uniform crossover is implemented.  For numerical 
examples the reader could refer to (Haupt & Haupt, 2004, Chapter 5).  

Mutation operators also suffer from the problems related to non-uniform sampling (Haupt 
& Haupt, 2004; Paszkowicz, 2006). Although usually positioned as a source of new genetic 
material, in practice a binary mutation operator (similarly to the crossover operator) is 
capable of producing only a finite number of offspring, called mutants, confined to 
orthogonal lines parallel to the axes. Furthermore, the strength of mutation (spread of 
mutants’ locations) cannot be controlled easily because the change of a single bit in the 
binary string used for storing optimization parameters (called chromosome) has a different 
impact on the parameters values depending on the bit position. A partial remedy for the 
latter is in the Gray coding (Taub & Schilling, 1986) or a continuous representation of 



 
Real-World Applications of Genetic Algorithms 

 

168 

variables. But this remedy has a side effect because a non-uniform distribution of potential 
offspring produced by standard binary crossover and mutation operators has its own 
hidden sense: it provides denser distribution of potential offspring and mutants in the 
neighbourhood of their parents that enhances local skills of the algorithms. 

Finally, a weighting mechanism is implemented in GA in the form of selection principles that 
define chances of the fittest individuals to survive and reproduce. Among the popular 
selection principles (Johnson & Rahmat-Samii, 1997; Haupt & Haupt, 2004), the strongest one 
(local-search oriented) is the roulette wheel with cost-function weighting. This scheme heavily 
promotes the best individuals and stimulates local search in their neighbourhood. This 
increases chances for population degeneracy and thus may negatively affect optimization 
process by premature convergence to a local extremum. To counterbalance this, a permanent 
inflow of new genetic material should be provided. This is usually done by choosing a larger 
population size, higher mutation rate, and/or periodic injection of randomly generated 
individuals. Sharing the GA searching efforts among several most promising individuals can 
be realized if a so-called tournament principle is used. This scheme deals with randomly 
selected sub-groups (instead of the whole population) and in such a manner improves chances 
of next-to-the-best individuals to survive and reproduce in later generations.  

Summarizing the discussion, we would like to highlight the following. Although there are 
many factors affecting the GA performance, they all serve the same reason: to effectively 
share the algorithm efforts between the stochastic global exploration and local exploitation. 
Thus variation of any control parameter can be considered as a contribution towards the 
enhancement of either global or local skills of the algorithm. This simplification helps a lot 
when adjusting GA control parameters for a specific problem at hand. Finally, one should 
remember that GA control parameters constitute a system of counterbalances; therefore 
variation of any parameters usually requires some adjustment of the others (e.g. a smaller 
population size should be compensated by a larger inflow of new genetic material, etc.).  
The additional opportunities for boosting the algorithm efficiency are discussed in the 
following section. 

3. On boosting the algorithm efficiency  

There are two complementary approaches for boosting the performance of an optimization 
algorithm. The first one is based on adaptation of the algorithm control parameters during 
optimization. The second one is based on the amelioration of the design space landscape. 
The advantages proposed by each approach are summarized below.  

3.1 Adaptation of the algorithm control parameters  

As it was discussed in Section 2, selection of the algorithm control parameters (e.g. crossover 
and mutation schemes and rates) and selection mechanisms affects the global and local skills 
of GAs. Thus, adaptation of these parameters during simulations enables one to gradually 
shift the search efforts from the global exploration to local exploitation. The adaptation can 
be carried out based on different time-varying quantities such as iteration number, 
population diversity, solution quality, or relative improvement. The numerical examples 
revealing the capabilities of this approach, as well as an exhaustive review of the literature 
on this subject, can be found in (Eiben et al., 1999; Boeringer et al., 2005).  
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3.2 Hybridization of different optimization techniques 

An additional degree of freedom for adjusting the algorithm capabilities for global and local 
search can be gained via hybridization of different optimization techniques. Both global-
global and global-local hybrids have been reported so far. The former are typically used to 
compensate for intrinsic weak points of evolutionary algorithms that come from their 
natural analogues (Robinson et al., 2002; Salhi & Queen, 2004; Paszkowicz, 2006; Grimaccia 
et al., 2007); whereas the latter are used for boosting the algorithm efficiency at the later 
stage of optimization and/or learning purposes (Chelouah & Siarry, 2003; Ishibuchi, 2003; 
Haupt & Chung, 2003; Elmihoub et al., 2006; Paszkowicz, 2006; Ngo et al., 2007; Quevedo-
Teruel et al., 2007; Boriskin & Sauleau, 2011a).  

The great potential of global-local hybrids is explained by the distinction and 
complementarity between the local and global search techniques. Both these features come 
from the decision-making mechanism implemented in local and global search techniques. 
The former defines direction where to go (based on the cost function gradient), whereas the 
latter relies on the elimination principle implemented in the form of a successive dismissal 
of less promising individuals. In such a way, EAs give preference to the gradual 
improvement of the entire population instead of promoting a single individual. This is 
contrary to the local gradient-based algorithms that start from a given initial guess and 
perform a down-hill movement towards a nearest minimum following the shortest 
trajectory. Finally, local techniques are the only means of learning. If hybridized with EAs, 
they can supply the latter with information about cost function gradients, which can be used 
for introducing additional weights for individuals with better potential for improvement.  

The aforementioned tactics are not new. Their pros and cons are well described in 
(Elmihoub et al., 2006). Nevertheless, the importance of global-local hybridization is still 
often underestimated, although the marriage of two is a simple and elegant way to achieve 
the optimal balance between the global and local skills of GA (or another EA).  

3.3 Multi-extremum search capabilities 

An important feature of EAs is their intrinsic capability for the multi-extremum search. On 
the way to an optimal solution, EAs sequentially investigate a number of local extrema. 
Most often, this information is lost as soon as the corresponding individuals are discarded 
due to lower fitness values or achievement of a stopping criterion. However, some of the 
next-to-the-best individuals can belong to basins of optimal solutions (or at least the most 
feasible ones due to some technical constraints not accounted for in the mathematical 
model). Therefore, search for multiple extrema and proper usage of the optimization history 
opens the door for development of advanced global optimization algorithms (Moret et al., 
1998; Chelouah & Siarry, 2003).  

3.4 Modification of the design space landscape  

A deciding factor for the solution convergence rate of any optimization problem is a 
landscape of the corresponding fitness function. Usually it is accepted as something 
predefined and therefore invariable, although this is not true. Definitely, above all the 
landscape depends on the problem at hand, but it can also be affected by the style of 
parameter representation. This includes the chromosome structure (Weile & Michielssen, 
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1997) and parameter encoding (ODonnell et al., 2003; Boriskin & Sauleau, 2011a). Therefore 
adjustment of the fitness function landscape can also be considered as a part of the 
optimization strategy. Indeed, the landscape can be easily modified via mapping (not 
obviously identical) accounting for the problem-specific information. If properly done, a 
new design space becomes more optimization-friendly thanks to a reduced dimensionality, 
smaller size, and/or smoother landscape.  

Note that mapping does not require any modifications of the cost-function itself. This  
constitutes an important distinction compared to (Ioan et al., 1998) and (Farina & Sykulski, 
2001), where it was proposed to reduce the computational load by replacing the original cost 
function by a simplified or approximated cost function. Instead, the mapping only assumes 
a change in the way of storing optimization parameters that facilitates integration of such an 
algorithm with external electromagnetic solvers, even those operating in a “black box” 
mode. Such an approach can be especially effective if many identical parameters are 
involved, e.g. geometrical parameters describing an antenna topology (Fernandes, 2002; 
Robinson et al., 2002; Godi et al., 2007; Boriskin et al., 2010; Rolland et al., 2010; Boriskin & 
Sauleau, 2011b) or phase/amplitude weights in the antenna aperture (Johnson & Rahmat-
Samii, 1997; Pérez & Basterrechea, 2007). A few examples of mapping realized on the basis 
of different encoding schemes are given in Section 5.  

3.5 Summary: Recipe for an efficient global optimizer  

Summarizing the discussion, a general recipe for an efficient global optimization algorithm 
can be outlined as follows. Start with an EA, whose control parameters are selected in a way 
to promote an exhaustive global exploration. Then gradually shift the algorithm efforts in 
the favour of the pseudo-local search. This can be done via a gradual adaptation of the 
algorithm control parameters and /or via a switching between different selection 
mechanisms. In addition, the learning capabilities of local optimizers can be used for 
determining the improvement potentials of selected individuals, based on the cost function 
gradients. This knowledge can be used to guide the selection process. If the optimization 
process shows signs of stagnations, a switching between different EAs can be performed. 
Finally, top-N individuals (if possible, selected from different solution basins) should be 
extracted and fine-tuned using a local gradient-based optimizer. Such a complementary 
strategy offers an optimal division of labour between the global and local search, as well as 
reaching the very bottom of all identified extrema. The latter is very useful for collecting the 
problem-specific information. To illustrate the discussion, a simple global-local hybrid GA is 
introduced in Section 4. 

4. Hybrid genetic algorithm 

In this section we present a global-local hybrid genetic algorithm (HGA) built in line with 
recommendations outlined in Section 3.5. The algorithm combines a binary GA and a 
steepest descent gradient (SDG) algorithm. The former is used for the global exploration, 
whereas the latter is used for tuning the top-N individuals produced by GA (hereafter 
labelled as “GA top-runners”) and considered as initial guesses for local optimization.  

A distinctive feature of the proposed algorithm is that it aims not only at a single best 
solution but instead identifies a given number of GA top-runners that are investigated at the 
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later stage with the aid of the gradient-based SDG optimizer. Such a two-step approach 
enables us to reduce significantly the GA stagnation period at the later stage of optimization 
and also to guarantee achievement of the very bottom of multiple extrema whose basins are 
identified by GA. The final solution is then selected among those produced by SDG.   

A flowchart of the proposed HGA is shown in Fig. 1. The purpose of each block of the 
algorithm is discussed below.  

 
Fig. 1. Flowchart of the HGA 

4.1 Global optimizer 

The global-local hybridization enables us to let GA concentrate mostly on the global 
exploration. For this purpose, GA parameters are selected in the following extreme manner 
that, on the one hand, enhances its global-search capabilities and, on the other hand, 
strongly promotes pseudo-local search around best individuals: small population size; high 
mutation rate; periodic injection of randomly generated individuals; no identical individuals 
(so-called twins) allowed; double-point crossover; uniform mutation. As a counterbalance in 
the favour of the GA local-searching capabilities, the elitism principle and the roulette wheel 
cost-function weighted selection mechanism are implemented. The logic behind such a 
selection of the GA control parameters was discussed in Section 3.  

4.2 Local optimizer 

For the reported study, the local optimizer is used only for tuning a given number of GA 
top-runners. To simplify comparison with a standard binary GA, we make SDG algorithm 
move using the same mesh as for GA, where it is defined by the binary representation of 
optimization parameters. For simplicity, we disable the “learning function” of the SDG, 
which means that there are no additional weights introduced in GA selection mechanism 
and there is no feedback between SDG and GA algorithms after switching between the two.  

4.3 Decoder  

An important feature of the proposed HGA is a decoder, which is used for communication 
between GA and EM solver. In contrast to a binary decoder which is an essential part of any 
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binary EA, this additional decoder is used for mapping between the original design space 
and a new one, which appears due to implementation of specific encoding schemes used for 
representation of optimization parameters. The decoder is not used for communication 
between the local optimizer and EM solver because at the final stage of optimization one 
needs access to the complete pool of parameter combinations corresponding to the original 
design space. 

4.4 Stack 

Finally, to avoid the recalculation of the cost function for already known individuals, a stack 
has been implemented in the form of an array storing parameters of the recently evaluated 
individuals and their cost function values. This is in line with recommendations given in 
(Linden, 1999). The optimal size of the stack depends on the complexity of the optimization 
problem. Our experience shows that a stack with size of three to five populations is usually 
sufficient. The content of the stack can be updated cyclically: each time a new individual 
appears it replaces the oldest one in the stack.  

4.5 Summary 

A combination of the aforementioned features guarantees a high efficiency and reliability of 
the proposed HGA when solving various optimization problems. It is worth being noted 
that the performance characteristics of HGA are boosted by letting each algorithm do what 
it is best suited for, rather than trying to push the optimization process by implementing 
some deterministic rules, which may cause a conflict with the stochastic nature of the 
evolutionary strategy. This makes the proposed algorithm very stable and universal. In 
addition, the performance of the algorithm is strongly facilitated by the amelioration of the 
design space landscape and elimination of redundant simulations. The effectiveness of the 
algorithm is demonstrated by solving two multi-parameter optimization problems, typical 
for EM synthesis (Section 5).   

5. Linear antenna array synthesis using HGA 

The optimization of antenna arrays has already become classics of the electromagnetic 
synthesis due to a simple formulation and practical importance, e.g (Haupt, 1995; Johnson & 
Rahmat-Samii, 1997; Weile & Michielssen, 1997; Rahmat-Samii & Michielssen, 1999; Isernia, 
et al., 2004; Boeringer et al., 2005; Haupt & Werner, 2007).  

To illustrate the performance of the developed HGA, two simple linear array optimization 
problems are considered, namely phase-only optimization aimed at the minimum side-lobe 
level (Sections 5.1) and amplitude-phase optimization aimed at a flat-top beam pattern 
(Section 5.2). In both cases the HGA features are adjusted in a way to let GA perform an 
exhaustive global search, aiming to identify 10 top-runners to be used as initial guesses for 
the SDG algorithm. The control parameters are selected as follows: (i) double-point 
crossover, (ii) uniform mutation with linearly decreasing rate of 20% to 10%, (iii) cost-
function-weighted roulette wheel selection mechanism, and (iv) permanent inflow of 
randomly generated individuals with a rate of 10%. Furthermore, we avoid twins which are 
replaced by randomly generated individuals each time when identical offspring appear. 
Finally, to preserve the continuous progress, a few best individuals (~5%) are stored from 
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previous generations (elitism principle). This set of parameters has been approbated on 
several standard test functions and found to be suitable for various optimization scenarios 
(these data are skipped for brevity).  

In the reported study, we approbate three different encoding schemes, namely: “direct”, 
“relative”, and “envelope” ones. The former is a standard encoding scheme when 
optimization parameters are stored as they are. In the relative scheme, optimization 
parameters are encoded as differences between neighbours. For most practical cases, this 
difference does not exceed a half of the parameter variation range. Thus the search domain 
for new parameters can be reduced by a factor of 2, which means reduction of the entire 
design space by 2N parameter combinations, where N is the number of optimization 
parameters. In case of the envelope encoding scheme, optimization parameters are 
represented using an envelope line, defined by a polynomial. For the current study the 
envelope line is  constructed as a sum of a few Gaussians. This enables us to replace the 
original design space with N dimensions by a new one with 3M dimensions, where 3M 
parameters are the amplitude, central value, and half-width of each Gaussian, and M is the 
number of Gaussians used. An empirical rule for selecting the latter parameter is 
M = NINT (N/10), where NINT returns the nearest integer value of the argument. For high-
dimensional problems (N ≥ 10), the reduction of the design space becomes really significant, 
which strongly facilitates the search for the global extremum.   

It is important to note, that in both non-direct encoding schemes the reduction of the design 
space is obtained via truncation of the original space according to some template defined by 
the encoding scheme used. Thus it is important to assure that this template “filters” poor 
solutions and preserve better ones. Definition of such a template is a tricky question. To 
some extend this is similar to guessing for a class of optimal solutions. It might look like the 
introduction of a template brings us back to a deterministic optimization scenario, criticised 
for its strong dependence on the quality of the initial guess, but it does not. As it will be 
shown below, the selected encoding schemes preserve flexibility sufficient for identification 
of optimal solution basins for various optimization problems. Once identified, these basins 
can be effectively studied using a gradient-based local optimizer. 

5.1 Test-case 1: Low-sidelobe via phase tapering 

The first test problem is the synthesis of a linear array aimed at reduction of the array factor 
(AF) side-lobe level (SLL) via phase weights optimization. A symmetrical linear array of 31 
equally spaced feeds with uniform amplitude weights is considered. The cost function 
returns a square of difference between the AF SLL for a given phase taper and its desired 
value. The elements of the array are spaced 0.5λ apart and phase weights are symmetric 
about the centre of the array with the central element having a phase of zero. Quantization 
of the phase weights is 4-bit. A trustable reference solution for this test problem can be 
found in (Haupt, 2007), whereas the one found by the proposed HGA is shown in Fig. 2.  

To assess the efficiency of HGA, its performance is superimposed with that of a binary GA 
whose control parameters are selected in line with general recommendations (Johnson & 
Rahmat-Samii, 1997). For convenience, parameters of both algorithms are summarized in 
Table 1.  
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A typical run of HGA is illustrated in Fig. 3. Here the best and average cost function values 
are denoted by solid thick lines, whereas cost function values of each individual at each 
iteration step are denoted by circles. Switching between GA and SDG occurs after 40 
generations. The family of ten colour lines shown after 40th generation illustrates the process 
of tuning the ten GA top-runners by means of the SDG algorithm. 
 

Control parameter HGA GA 
Population size 50 50 

Probability of crossover Linearly increasing: 65 → 75 % 90 % 

Probability of mutation Linearly decreasing: 20 → 10 
% 5 % 

Inflow of random individuals 10 % -- 
Number of preserved best 

individuals 5 % 5 % 

Selection mechanism Cost-function weighted  
roulette wheel 

Tournament with sub-
population size of 10% 

Stopping criterion 40 iterations for GA +  
as much as needed for SDG 200 iterations 

Table 1. Control parameters of HGA and GA algorithms 
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Fig. 2. Optimal solution found by HGA: (a) Array factors of the cophased and optimized 
arrays, (b) phase weights corresponding to the optimized solution. 

The same optimization run represented in terms of AF SLL is shown in Fig. 4. Here it is 
superimposed with the curve which represents the averaged solution produced by a 
standard GA. As we can see, the standard GA quickly reaches the AF side-lobe level of 
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approximately -15 dB and spends twice more time to improve solution for another half dB. 
Such behaviour is typical for GA that continues to explore the entire design space (more or 
less exhaustively) during all simulation time. This protects GA from “hanging” in local 
minima but slows down the convergence rate at the later stage of optimization. The 
proposed HGA is free from this drawback because here GA is used only to identify the 
optimal solution basins whereas their exploitation is performed in a straight-forward 
manner using the SDG algorithm, whose performance is based on the cost function gradient. 
Indeed, we can see that at the initial stage, while HGA is focused on the global exploration, 
standard GA performs better. Nevertheless, as soon as HGA switches for local optimizer, it 
catches up and outruns GA in a very few steps.  
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Fig. 3. A typical run of HGA when applied for the linear array synthesis aimed at minimum 
AF SLL. The AF pattern of the optimized array are shown in Fig. 2.  

 
Fig. 4. Comparison between HGA and a standard GA when applied for the linear array 
synthesis aimed at minimum AF SLL. The HGA run is the same as shown in Fig. 3 but 
represented in terms of AF SLL. The GA curve is averaged over 20 trials. The inset zooms in 
on the local optimization stage of HGA. 

As already explained, in the proposed hybrid algorithm, GA is used to generate a few best 
solutions (top-runners) to be then refined using the SDG algorithm. To this end, it is 
interesting to note that refinement of only the best GA solution (let’s label it as a “GA 
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winner”) usually does not give much advantage. This is because the winner often belongs to 
a wide and gently slopping basin, which is optimization-friendly and thus already well 
examined by GA, whereas most promising solutions are usually located on sides of deep 
and narrow valleys whose exploration using GA is troublesome. An illustration to such a 
situation is given in Fig. 4. As we can see, the bottom of the winner’s solution basin is 
reached in four iterations with no significant improvement achieved, whereas the 3-rd, 8-th, 
and 9-th top-runners demonstrate much better improvement. In particular, refinement of 
the 9-th top-runner resulted in SLL of -15.4 dB which is approximately 1 dB lower than the 
final solution found with the GA winner taken as the initial guess.  

To get more statistical data, 20 trials have been performed with the same set of parameters 
(Fig. 5). The obtained data clearly evidence that GA winners rarely appears to be the best 
initial guess for local search. Therefore evaluation of several top-runners is strongly 
recommended in order not to waste GA efforts in a hunt for a single winner, which often 
belongs to a local solution basin. Note that this recommendation remains valid for all tree 
encoding schemes. 

 
Fig. 5. Number of trials when each of ten GA top-runner, tuned by SDG, finished with the 
best or second-best result. The total number of trials is 20.   

-17,0

-16,0

-15,0

-14,0

-13,0

-16.83
-16.73

-15.32         -16.9
     reference solution

        -13.26
     SLL of the co-phased array

EnvelopeRelativeDirect  

Ar
ra

y 
fa

ct
or

 S
LL

, d
B

 
Fig. 6. The final solutions found by HGA in 20 trials applied with three different encoding 
schemes.  The reference solution is borrowed from (Haupt, 1997).  
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Finally, the impact of different encoding schemes on the algorithm performance is 
illustrated in Fig. 6. As one can see, the relative and envelope (i.e. Gaussian with M=2) 
encoding schemes provide much better grouping of final solutions around an improved 
average value. The better quality of the final solution and the significant reduction of cost 
function evaluations (see Table 2) are of the primary importance for the EM synthesis 
because solution of direct EM problems is usually very time consuming.  
 

Algorithm 
type 

No. of  
optimization 
parameters

No. of bits 
per 

parameter

GA encoding 
scheme 

No. of 
iterations * 

(SDG) 

Cost function 
evaluations *  
(GA + SDG) 

Final 
solution * 
(SLL, dB) 

GA 15 4 Direct -- 10000 -15.18 
HGA 15 4 Direct 9.6 3895 -15.32 
HGA 15 3 Relative 10.7 4216 -16.73 
HGA 6 4 Gauss (M = 2) 11.0 4300 -16.83 

* Data averaged over 20 trials 

Table 2. Statistical data: HGA vs. standard GA. 

5.2 Test-case 2: Flat-top beam via complex weighting 

The second test problem is the synthesis of a linear array with a flat-top beam via joint phase 
and amplitude weights optimization (Fig. 7). This time an even symmetrical linear array of 
30 isotropic feeds spaced half lambda apart (d = 0.5λ) is considered. The weights have 4-bit 
quantization and are symmetric about the centre of the array with the central elements 
having phase of zero. The pattern template is defined as follows: the flat-top beam 
parameters are θ1 = 28° and θ2 = 30°, the ripples level in the main beam is restricted by  
F1=–2 dB, and the highest allowed SLL is -20 dB. The cost function equals the sum of 
penalties charged for crossing the given corridor (Fig. 7b): 
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where K is the number of sampling points, K = 90.  

The radiation pattern of the optimized array and its amplitude/phase weights are shown in 
Fig. 8, and a reference solution is available in (Galan et al., 2011). 

To demonstrate the efficiency of the HGA for the considered optimization problem, we 
compare its performance with that of a standard GA. Parameters of the algorithms are the 
same as shown in Table 1, except the following: (i) for HGA, the switching between GA and 
SDG occurs after 50 iterations, (ii) population size for the standard GA has been increased 
up to 200 individuals in order to compensate for the larger number of optimization 
parameters (i.e. total of 29, which corresponds to 15 amplitude weights and 14 phase 
weights). The number of trials has been also increased up to 100.  

The statistical data presented in Fig. 9 clearly demonstrate that the proposed HGA 
significantly outperforms a standard GA in terms of the final solution quality even if the 
same direct encoding is used, whereas implementation of the advanced encoding schemes 
leads to further improvement of the stability in the algorithm performance evidenced by the 
improved quality and superior grouping of final solutions. Once again, the best efficiency is  
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(a) 

  
 (b) 

Fig. 7. Linear antenna array under consideration: (а) geometry and notations of the problem, 
(b) template for the flat-top beam radiation pattern.  
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Fig. 8. Optimal solution found by HGA: array factor of the 30-element linear array with 
optimized phase and amplitude weights. Dashed line denotes the pattern template.  
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observed for the envelope encoding scheme. Note that this time parameters of two types are 
involved (i.e. phase and amplitude), therefore the envelope lines for the phase and 
amplitude weights are reconstructed independently, which explains the increase of the 
number of optimization parameters up to 12 (two envelope lines build of two Gaussians 
each). Finally, it is worth being mentioned that the overall computational time (measured in 
terms of a number of cost function evaluations) is nearly the same for all runs (Table 3), 
which means that the improved performance is achieved thanks to a more effective 
optimization strategy. 

 
Fig. 9. Final solutions found in 100 trials by a standard GA and HGA with three different 
encoding schemes. The average values of the final solutions produced are shown nearby. 
 

Algorith
m type 

No. of  
optimizati

on 
parameter

s 

No. of 
bits per 
paramet

er 

GA 
encoding 
scheme 

No. of 
iterations 
* (SDG) 

Cost 
function 

evaluations 
*  

(GA + SDG) 

Final  
solution * 

(cost 
function) 

GA 29 4 Direct -- 20000 367.9 
HGA 29 4 Direct 26 17062 21.5 
HGA 29 3 Relative 34 21541 11.8 

HGA 12 4 Gauss 
(M = 2) 37 23226 11.3 

* Data averaged over 100 trials 

Table 3. Statistical data: HGA vs. standard GA. 

6. Conclusion  

In this chapter, the factors affecting the performance of genetic algorithms have been 
discussed and a few hints on boosting the algorithm efficiency have been provided. In 
particular, three complementary options have been outlined, namely: adjustment of the 
algorithm control parameters, hybridisation of different global and local algorithms, and 
amelioration of the design space implemented in the form of mapping. The discussion has 
been illustrated by presentation of a global-local hybrid genetic algorithm, whose efficiency 
in solving multi-parameter problems has been demonstrated through numerical examples. 
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The main benefits achieved thanks to hybridization of a binary GA and a SDG algorithms 
are as follows: (i) improved convergence rate, (ii) better quality of the final solution, and (iii) 
the possibility to investigate multiple local extrema during a single run of the algorithm. 
These features are of the primary importance for the electromagnetic synthesis. Although 
the optimal values of the algorithm control parameters may vary for different optimization 
problems, the general recommendations regarding the logic behind the selection of these 
parameters are applicable for various optimization scenarios and different evolutionary 
algorithms.  
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1. Introduction

It is an agreement that maritime transport of goods occupies an important role in economic
development throughout the history. For centuries, port cities were in center of economy,
where there were traffic of all kind of products and concentration of industrial factories.

In this background, ship containerization brought great advantages to this process. Its
invention in mid-1950s was a key factor in development of modern global commerce by
bringing down the cost of transporting and reducing time it takes for loading and unloading
cargo (Levinson, 2008).

However, the efficient use of containerization involves new and specialized logistic process,
a number of technologies, logistics plans and automated systems to handle a great number
of containers. To answer these requirements, computation appears as important tool. For
example, software can “determine the order in which the containers are to be discharged, to
sped the process without destabilizing the ship" (Levinson, 2008).

The described scenario has been treated in academic literature as the Container Loading
Problem (CLP), which was firstly approached by Gilmore and Gomory (Gilmore & Gomory,
1965a). There are some variances of this problem in literature and we approach the Knapsack
Loading Problem (3D-KLP), that is, the task of to orthogonally pack a subset of given boxes of
various sizes within a single container with fixed dimensions optimizing a criterion such as
the total loaded volume.

Still according Dyckhoff (Dyckhoff, 1990) and Wascher (Wäscher et al., 2007), the CLP is a
NP-hard problem in the strong sense and belongs to cutting and packing problems problem
class. It means there is no known polynomial algorithm that exactly solves the CLP in
acceptable execution time.

So, to the described problem, specifically the Knapsack Loading Problem (3D-KLP), this work
presents a novel backtracking heuristic that not only maximizes the packed cargo volume but
also optimizes its weight distribution. It is the great contribution of present work. Mainly if
we consider that the cargo to be packed is composed by items with different densities, which
turns the problem more difficult. On the other hand, if we are stowing cargoes of uniform
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density, weight distribution is not a problem. The figure 1 illustrates a container which mass
center of cargo is not necessarily near to its geometric center.

Fig. 1. Different types of packed boxes.

The present methodology is composed by two phases with distinct goals. The first phase is
concerned with maximizing the use of container, consequently minimizing the waste of space.
It is made by combining a search algorithm, the backtracking, with heuristics that solve integer
linear programming models to pack boxes. The second phase executes a Genetic Algorithm to
maximize the weight distribution of previously packed cargo. In this work we intend to focus
on second phase and consider why genetic algorithm is good alternative to be combined with
Heuristics Backtracking.

This work is organized as follows. In section 2 we discuss some related work to solve the
CLP, presenting the three main classes of methodologies to approach the problem. In section
3 we present the two phases of our proposed algorithm. We focus in second phase and
how we apply a standard genetic algorithm to optimize the weight distribution. Finally, in
section 4 we present some computational results. So, in section 5 we make some conclusions
regarding the quality of the solutions provided and make some considerations concerning
future development.

2. Approaches to solve the container loading problem

In this chapter we present three categories of methodologies existing in theoretical literature
on Container Loading Problem: Exact Methods, Heuristics and Hybrid Methods. We discuss
these categories and some related work for each category.

2.1 Exact methods

The Container Loading Problem can be modeled as an integer programming problem, as
described by Chen (Chen et al., 1993). The proposed model was validated by solving small

184 Real-World Applications of Genetic Algorithms



A Hybrid Methodology Approach for Container Loading Problem Using Genetic Algorithm to Maximize the Weight Distribution of Cargo 3

problems with up to 6 boxes. In other work, Gilmore and Gomory (Gilmore & Gomory, 1963;
1965b) present another {0-1} integer model to solve the CLP using the Simplex method. In this
model, the possible coordinates for place boxes belongs to a discrete set and there are {0-1}
decision variables to determine if a box is placed is a specific position and other ones to avoid
box overlapping. The model in (Gilmore & Gomory, 1963; 1965b) can be unfeasible due to
its large number of variables and constraints. Larger the container is higher the number of
variables and constraints.

Some characteristics of methodologies that use only exact methods:

• They aim to find the optimal solution;
• They require higher-level computational resources
• Feasible only for small instances.

Due to cited characteristics, few work exist using only exact methods. It is necessary another
methodology more feasible that allow us to find good results in acceptable time.

2.2 Heuristics

However exact methods find the best solution, it becomes impractical due to the necessity
of high computational resources. Bypassing this problem, much work proposed strategies,
heuristics, to avoid applying exact methods. Now we present some known applications in
literature.

One of the most known is the wall building heuristic. It was firstly described by George and
Robinson (George & Robinson, 1980) to create layers across the depth of the container. Each
layer is filled in a number of horizontal strips and their dimensions are determined by the first
box, taken from a priority queue. A two-dimensional packing algorithm arranges the boxes
within the layers. This heuristic can be effortlessly adapted to build horizontal slices.

Many approaches to CLP are based on ‘wall-building’. For example, Pisinger(Pisinger,
2002), that presents an algorithm in which the set of layer dimensions are defined through a
backtracking algorithm in order to achieve better results. The wall building strategy was also
combined with others methods to attend additional requirements. For example Davies and
Bischoff (Davies & Bischoff, 1999) build segments, which are composed of one or more walls,
which could be rotated and/or interchanged in order to improve the weight distribution.

It is also possible approach the CLP through metaheuristics, that is, computational methods
that make few or no assumptions about the problem to be optimized, and try achieve
candidate solutions with good measure of quality. These methods, however achieve good
solutions in reasonable time, they do not guarantee the optimal solution. In literature we
find some works which apply tabu search or simulated annealing in their algorithms with
significant improvements.

Genetic Algorithm (GA) has been successfully used to solve the Container Loading Problem.
For example, Gehring (Gehring & Bortfeldt, 1997) reduced the 3D-KLP to two-dimension
packing problems by arranging items in stacks to the top of container, a strategy based
on (Gilmore & Gomory, 1965a). So, a packing sequence of the stacks is represented as a
chromosome. The GA process a population of solutions in order to find a good solution,
that is, a good packing plan.
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Although heuristics methods have better execution time when compared with exact methods,
they do not guarantee to find an optimal solution.

2.3 Hybrid methods

We increasingly find papers that seek to combine exact algorithms and metaheuristics to
solve combinatorial optimization problems. ConformDumitrescu and Stuetzle (Dumitrescu&
Stuetzle, 2003), these ideas fall under a category of algorithm that has been commonly referred
to as hybrid methods.

Nepomuceno et al. (Nepomuceno et al., 2007) introduced a successful work in which
reduced instances of 3D-KLP are generated by a genetic algorithm, and then solved by linear
programming.

Fig. 2. Flow chart presented in (Nepomuceno et al., 2007).

We also find in literature approaches that combine heuristics methods and local search
methods. For example Peng et al. (Peng et al., 2009) combine a basic heuristic algorithm
to generate feasible solution from a packing sequence and a search algorithm to find an
approximated optimal solution from generated solution.

Thus, once we briefly presented exact, heuristics and hybrids methods and some examples, it
is interesting to say that there is no single approach that works better for all problem types
or instances. As stated in no free lunch theorem for search and optimization (Wolpert &
Macready, 1997), each algorithm is better for a set of specific cases or problem instances while
it is worse for other ones.

3. The methodology for 3D knapsack loading problems

As presented in previous works (Araújo, 2011; Araújo & Pinheiro, 2010a;b), the Heuristic
Backtracking methodology consists of two independent steps that we call ‘phases’. In the
first phase, the algorithm is concerned with maximizing the packed volume by combining
wall building heuristics with a backtracking search algorithm to choose the best order of
proceeding implemented heuristics. In second phase, the algorithm optimizes the weight
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distribution of cargo by using a classical genetic algorithm to determine a good arrangement
of walls, layers and blocks that were built in first phase. This searching for good arrangements
does not affect the packed items by previous phase.

In present work we focus the second phase and the justification in we used genetic algorithm
in our approach.

3.1 Phase 1 - Heuristics backtracking

In this phase, we are concerned with maximizing the total volume of packed cargo. It is
based on Pisinger’s approach (Pisinger, 2000) which combines wall building heuristic with
backtracking in order to determine the best dimensions of layers. In other hand, we used
backtracking to determine the best implemented heuristics to be used although the packing
process for each subproblem. The result is a build tree solution.

The Heuristics Backtracking recursively fill the container creating blocks of boxes that are
through proposed heuristics. They are in order: XZ Mixed Layer (a), XY Mixed Layer (b), ZY
Mixed Layer (c), Partition on X (d), Partition on Z (e), Partition on XZ - Stack (f), Strip Block
on X (g) and Strip Block on Z (h). Examples of built blocks are illustrated in figure 3.

(a) A XZ Mixed Layer
instance.

(b) A XY Mixed Layer
instance.

(c) A ZY Mixed Layer
instance.

(d) A Partition on X
instance.

(e) A Partition on Z
instance.

(f) A Partition on XZ
instance.

(g) A Strip Block on X
instance.

(h) A Strip Block on
Z instance.

Fig. 3. The used heuristics in the algorithm.

Each heuristic solves a specific integer programming model that aims to maximize the total
packed relevance, a non-linear coefficient associated to each box to priories the bigger ones
during packing. The adopted relevance value for ith greatest box type in a list of n box types
is r(i, n) = 2n−i. Therefore, the algorithm lets the smaller boxes to pack in residual space,
when it is small. If the model has solution, the algorithm makes the packing and generates
the output problem that will be the input problem for the next recursive call to fill the residual
space.

As another characteristic, each heuristic accept a small waste of space. This characteristic
allows us to find out good solutions that would be discarded if we would accept only optimal
solutions.

We use a tree data structure to maintain the solution where each node keeps the received
subproblem (input problem), the well-succeeded heuristic to solve it, the list of packed boxes
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using this heuristic and the residual subproblem, which is the input problem of the next node.
Some partitions generate two output problems (Partition on X, Partition on Z and Partition on
XZ). In these cases, the node has two child-nodes, firstly solving left-node and its child nodes
after right node.

The figure 4 illustrates two solutions for a same problem, the benefit by using backtracking
and how it achieves better solutions. A better solution t2, presented in 4-b, was found
switching the used heuristic in second node from first found solution t1, presented in figure
4-a.

(a) First solution. (b) A better solution. (c) Conventions.

Fig. 4. Solutions for a problem instance.

An important feature of each heuristic regards about the type of built block of boxes, which
can be rotated or not. It is explored in the next phase of our implementation, when the
algorithm optimizes the weight distribution using a genetic algorithm.

3.2 Phase 2 - genetic algorithm

As previously discussed, the weight distribution of cargo is an important practical
requirement to consider during its transport. It is desirable to have the center of gravity of
cargo and geometric midpoint of container as close as possible.

Davies and Bischoff (Davies & Bischoff, 1999) presented an algorithm based on Gering’s
approach (Gehring et al., 1990) to obtain a packing arrangement with a good weight
distribution. First, it creates multiple vertical layers across the width of the container. Set
of layers called segments are rotated or have their positions interchanged in order to improve
the weight distribution in a greedy way. The second phase in our methodology is based on
idea of rotating blocks of boxes in to optimize the weight distribution without the common
trade-off between efficient volume utilization and weight distribution.

The output of the first phase, presented in section 3.1, is a tree solution as exemplified in figure
4-a and 4-b. A node with packed boxes is called significant node. In figure 4-b the nodes 0, 1,
2, 3 and 5 are significant nodes. All blocks of boxes that were built using the implemented
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heuristics can be rotated as illustrated in figure 5. In other words, each built block of boxes
can be arranged in either even rotation (no rotation) or odd rotation.

(a) Even rotation of
a XZ Mixed Layer
instance.

(b) Odd rotation of
a XZ Mixed Layer
instance.

(c) Even rotation of a XY
Mixed Layer instance.

(d) Odd rotation of
a XY Mixed Layer
instance.

(e) Even rotation of
a ZY Mixed Layer
instance.

(f) Odd rotation of
a ZY Mixed Layer
instance.

(g) Even rotation of a
Partition on X instance.

(h) Odd rotation of a
Partition on X instance.

(i) Even rotation of a
Partition on Z instance.

(j) Odd rotation of a
Partition on Z instance.

(k) Even rotation of
a Partition on XZ
instance.

(l) Odd rotation of
a Partition on XZ
instance.

(m) Even rotation of
a Strip Block on X
instance.

(n) Odd rotation of
a Strip Block on X
instance.

(o) Even rotation of
a Strip Block on Z
instance.

(p) Odd rotation of
a Strip Block on Z
instance.

Fig. 5. Rotations of heuristics.

From what was defined, it is possible to represent a tree solution with n significant nodes by a
binary chromosome with n genes, a gene gi for each significant node ni. The statement gi = 0
indicates the block of boxes in ni should be arranged in even rotation. If gi = 1, in the way
called odd rotation.

To illustrate how the algorithm changes the weight distribution of a tree solution, we chose
that one in figure 4-b, with 5 significant nodes. We have in figure 6 two binary chromosomes
with 5 genes that differ in value of node 5. It means the algorithm applies rotation to the block
of boxes in node 5 of tree solution, which in turn was built through ‘XY Mixed Layer’, and
consequently resulting in a new weight distribution of cargo.
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Fig. 6. Different chromosomes obtained from a same solution.

For each individual we can apply an evaluation function that informs us how well the
weight distribution is. The proposed evaluation function measures the distance between
the geometric center of container and the cargo’s center of mass. In both points, y-axis is
disregarded. The functions is defined in function 1.

f =
√
(xgc − xcm)2 + (zgc − zcm)2 (1)

xcm =
∑i∈B xiwi

∑i∈B wi
; zcm =

∑i∈B ziwi

∑i∈B wi
(2)

where (xgc, zgc) is the geometric center of the container, (xcm, zcm) is the center of mass of the
entire cargo, (xi, zi) is the center of mass of a box i and wi its weigh. During implementation
we assumed the center of mass as been the geometric center of box.

It is important to note that to calculate the new center of mass from combining the found
solution in first phase and a set of rotations described by a chromosome is a very quick
operation once it does not change the relative positions of block of boxes. Therefore, it is
not necessary to execute again the first phase of implementation. The spent time to evaluate
a solution (individual) directly affects the execution time. In a hypothetical scenario, if
it necessary 10 seconds to evaluate an individual, a population of 100 individuals that is
improved by 60 generations, for example, it leads to a total execution time greater than 16
hours.

In implementation of Genetic Algorithm, which simplified flow cart is illustrated in figure 7,
we used its canonical definition:

• Fixed-length binary chromosomes: this size is determined by the quantity of significant
nodes of found solution in phase 1;

• Positive fitness domain: once the evaluation is the measuring of the distance between two
points, the geometric center of container and the center of mass of cargo, its values is
non-negative;

• Fitness proportional selection: the probability pi of an individual i to be selected to
reproduce is pi = fi/ ∑N

j=0 f j, where N is the number of individuals in the population
and fi is the evaluation of individual i;

• One-point point crossover.

In next sections we propose a new methodology to compare results from different instances
and why we chose genetic algorithm to be used with Heuristics Backtracking.
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Fig. 7. Simplified flow chart of a Genetic Algorithm.

3.2.1 An approach to compare results regarding weight distribution

There are some known benchmarks in literature to packing problems, including the 3D
Knapsack Loading Problem. For example, Bischoff and Ratcliff (Bischoff & Ratcliff, 1995b)
proposed a test data for comparing the different approaches for cutting and packing problems.
This benchmark and others are cited in section 4.

However, in most of available problems there is no information about weight. In these cases,
we can stipulate a formula to define the weight from box dimensions. Moreover, most of
these benchmarks differ in many aspects, for example the size of container. In this section we
standard the measure to weight distribution requirement in order to facility the comparing
between our results and future developments or works, even using different benchmarks.

We stated in previous section about the evaluate function of a solution. It is measured by the
distance d(s) between the geometric center of container and the center of mass of the entire
cargo in solution s, unconsidered y-axis.

Let it be Diag the length of the diagonal of container floor, where Diag =
√

W2 + D2, W and
D the width and depth of container, respectively. Thus, we calculate the quality of weight
distribution qwd in a solution as follows:

qwd(s) =
d(s)
Diag

To better understand the used variables, they are illustrated in figure 8.

191
A Hybrid Methodology Approach for Container Loading Problem 
Using Genetic Algorithm to Maximize the Weight Distribution of Cargo



10 Will-be-set-by-IN-TECH

Fig. 8. Variables to measure the quality of the weight distribution of a solution s.

Therefore, in section 4, we will present the efficiency of using of container and the quality
considering the weight distribution.

In this section, we presented the two phases of proposed methodology including an
approach to compare results concerning weight distribution. In next section we present some
computational results to prove our approach’s efficiency.

4. Computational results

In order to check the quality of generated solutions, we tested some known benchmark
test suites that were found in literature. We present computational results for both kinds
of problems, two and three-dimensional ones. We also present a case study in which
we compared our results with those in use within ESMALTEC, a stove and refrigerator
manufacturer in Brazil.

The computational results were obtained using an Intel Core 2 Duo 2.1 GHz with 3 GB of
RAM. The operating system is Windows Vista Home Edition. The development platform is
Java 6.0 and Eclipse 3.1.1 tool, while the solver utilized was CPLEX 9.0.

Before present results, it is necessary to notice that container loading instances can be classified
according its cargo. According to Dyckhoff (Dyckhoff, 1990) and (Wäscher et al., 2007) the
cargo can be regarded as homogeneous (identical small box types), weakly heterogeneous (many
items of relatively few different box types) or strongly heterogeneous (many items of many
different box types). In order to detect in which type of cargo our approach works better,
we tested different kinds of problems, as illustrated in figure 9. Instances of CLP are also
classified according to the diversity of box types that can be loaded into the container. We
evaluate our proposed algorithm on both homogeneous and weakly heterogeneous instances.

In this sense, Bischoff and Ratcliff (Bischoff & Ratcliff, 1995b) proposed a test data for
comparing the different approaches for cutting and packing problems. The benchmark library
with 700 problems is available on the internet on the website http://people.brunel.
ac.uk/~mastjjb/jeb/info.html. This collection of test data sets is used to perform
a variety of Operational Research approaches. These data sets contain several types of
problems, from homogeneous (BR1) to strongly heterogeneous (BR7). In brackets the number
of types of boxes. We compare our obtained results average with the following approaches: a
genetic algorithm proposed in (Gehring & Bortfeldt, 1997) (GA), the constructive algorithm
on (Bischoff & Ratcliff, 1995b)(CA), a constructive algorithm by Bischoff (Bischoff et al.,
1995)(HBal), the hybrid genetic algorithm described in (Bortfeldt & Gehring, 2001)(HGA),
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Fig. 9. Types of instances according tue quantity of boxes.

the parallel genetic algorithm in (Gehring & Bortfeldt, 2002)(PGA), a proposed heuristic in
(Bischoff, 2006)(PH) and Tabu Search proposed in (Bortfeldt et al., 2003)(TS).

The achieved average results and the standard deviations (σ) by our methodology are
represented in columns (HB+GA) and σ, respectively. These results were obtained with
timeout execution parameter equals to 10 minutes.

Due to software limitations, for example the maximum number of variables, we tested the
first five libraries (BR1 - BR5).

Group GA CA HBal HGA PGA PH TS HB+GA σ

BR1 (3) 86.77 83.37 81.76 87.81 88.10 89.39 93.23 92.13 4.07
BR2 (5) 88.12 83.57 81.70 89.40 89.56 90.26 93.27 91.09 5.09
BR3 (8) 88.87 83.59 82.98 90.48 90.77 91.08 92.86 90.38 8.45
BR4 (10) 88.68 84.16 82.60 90.63 91.03 90.90 92.40 89.07 7.08
BR5 (12) 88.78 83.89 82.76 90.73 91.23 91.05 91.61 88.17 7.52

Average 88.24 83.72 82.36 89.81 90.14 90.54 92.67 90.17 6.44

Table 1. Comparing some proposals, in %.

An instance of solution of BR1 instance is presented in figure 10.

Fig. 10. A packing solution for the first instance form the BR1 set: (a) front view, and (b) back
view.
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With low timeout execution we achieved good results mainly for BR1 - BR3, the weakly
heterogeneous problem instances. It is possible gain efficiency with set up a higher value
to timeout execution and by implementing new heuristics to build layers across the container.

In order to prove the efficiency of our algorithm in to find good arrangements such way that
a good weight distribution is achieved, we show the obtained results for Bischoff/Ratcliff
test cases. We used the following formula to create boxes with different densities: weight =
(width/(2 ∗ 105)) × (w × h × d), where w/(2 ∗ 105), where w, h and d represent the width,
height and depth of the box, respectively.

We considered the crossing-over parameter equals to 0.75, mutation parameter equal to 0.3,
population size equal to 64 and maximum number of generations equals to 100. The table
2 presents the average length of chromosome (length), the less distance between center of
mass of cargo and the geometric center of container (dist), the diagonal of container (diag),
the average quality of solution (qwd) and its standard deviation (σ) and the execution time in
seconds.

Group length dist. diag. qwd(%) σ time(s)
BR1 8.73 100.3 626.87 16 0.19 5.1
BR2 11.01 70.4 626.87 11 0.17 10.7
BR3 15.44 73.5 626.87 12 0.17 31.7
BR4 17.7 75.06 626.87 12 0.19 0.93
BR5 19.97 45.15 626.87 8 0.15 1.04

Table 2. Best-case results of Nepomuceno et al. (Nepomuceno et al., 2007) and the present
methodology.

From the table 2 we affirm that chromosome length growing allows to diversify the
arrengements of cargo, even and odd rotation discussed in section . However this
characteristic needs improving, all weight distribution are relatively near to geometric center
of container, using boxes with very different values of density.

The presented methodology achieved good results, mainly to weakly heterogeneous problem
instances. However, to Bischoff/Ratcliff test cases, theweight distribution (quality of solution)
is better to heterogeneous instances. The algorithm also reduces the common trade-off
between an efficient use of container and the weight distribution of cargo.

In figure 11 we compare the results considering the weight distribution and use of container.

Fig. 11. Comparative of results using different benchmarks.
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As we are interested in a maximum use of container and a coefficient of weight distribution
(qwd) near to zero, the region we aims is the circle region in figure 11. Thus, the best achieved
results were BR2 and BR3. This graphic aims help us to rank the results considering use of
container and weight distribution.

5. Conclusion and future work

We introduced a hybridmethodology, the Heuristics Backtracking, an approach that combines
a search algorithm, the backtracking, integer linear programming and genetic algorithms to
solve the three dimensional knapsack loading problem considering weight distribution.

We discussed about the importance of weight distribution, among others generally
unconsidered practical requirements, in practical situations in order to avoid damage of cargo
during its transport by ships, trucks or airplanes. We also proposed a needed methodology
to compare the quality of solutions 3.2.1, even to different benchmark tests or approaches’
results.

Finally, we showed that the Heuristics Backtracking (HB) achieved good results without the
commonly great trade-off between the utilization of container and a good weight distribution.
Some benchmark tests taken from literature were used to validate the performance and
efficiency of the HB methodology as well its applicability to cutting problems.

There are promising lines of investigation. Some of them to improve the already good results
mainly regard with use of container and execution time, others to apply the HB to other kind
of problems. So, we intend:

• To approach other variants of Container Loading Problem, for example the strip packing,
placing boxes on shelves (Hoare & Beasley, 2001), load bearing ability (Ratcliff & Bischoff,
1998) among others;

• To implement heuristics those solve non-linear programming models to avoid many
parameterized calls. It will improve the execution time of first phase;

• To improve the weight distribution by increasing the chromosome length. Some built
blocks can be rotated in more than one way, so they can be manipulated by more than
one gene. This changing will allow us to increase the quantity of discrete values for
individuals’ fitness;

• To change the backtracking algorithm, equivalent to a brute-force search. It intends to
optimize the entire algorithm’s time;

• An application of present methodology is in progress to solve cutting problems, similarly
to what was made by other hybrid methodologies (Nepomuceno et al., 2008; Pinheiro et
al., 2011).
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1. Introduction

Several researches on scheduling problems have been done under the assumption that
setup times are independent of job sequence. However, in certain contexts, such
as the pharmaceutical industry, metallurgical production, electronics and automotive
manufacturing, there are frequently setup times on equipment between two different
activities. In a survey of industrial schedulers, Dudek et al. (1974) reported that 70%
of industrial activities include sequence-dependent setup times. More recently, Conner
(2009) has pointed out, in 250 industrial projects, that 50% of these projects contain
sequence-dependent setup times, and when these setup times are well applied, 92% of the
order deadline could be met. Production of good schedules often relies on management of
these setup times (Allahverdi et al., 2008). This present chapter considers the single machine
scheduling problem with sequence dependent setup times with the objective to minimize
total tardiness of the jobs (SMSDST). This problem, noted as 1|sij|ΣTj in accordance with the
notation of Graham et al. (1979), is an NP-hard problem (Du & Leung, 1990).

The 1|sij|ΣTj may be defined as a set of n jobs available for processing at time zero on a
continuously available machine. Each job j has a processing time pj, a due date dj, and a
setup time sij which is incurred when job j immediately follows job i. It is assumed that all
the processing times, due dates and setup times are non-negative integers. A sequence of
the jobs S = [q0, q1,..., qn−1, qn] is considered where qj is the subscript of the jth job in the
sequence. The due date and the processing time of the jth job in sequence are denoted as dqj

and pqj , respectively. Thus, the completion time of the jth job in sequence will be expressed

as Cqj = ∑
j
k=1(sqk−1qk + pqk ) while the tardiness of the jth job in sequence will be expressed as

Tqj = max(0, Cqj − dqj ). The objective of the scheduling problem studied is to minimize the
total tardiness of all the jobs which will be expressed as ∑n

j=1 Tqj .

Different approaches have been proposed by a number of researchers to solve the 1|sij|ΣTj
problem. Rubin & Ragatz (1995) proposed a Branch and Bound approach, which quickly
showed its limitations. It could optimally solve only small instances of benchmark files of
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15, 25, 35 and 45 jobs proposed by these authors. Bigras et al. (2008) have optimally solved all
instances proposed by Rubin & Ragatz (1995) using a Branch and Bound approach with linear
programming relaxation bounds. They also demonstrated and used the problem’s similarity
with the time-dependent traveling salesman problem (TSP). This Branch and Bound approach
solved some of these instances in more than 7 days. Because this problem is NP-hard, many
researchers used a wide variety of metaheuristics to solve this problem, such as a genetic
algorithm (Franca et al., 2001; Sioud et al., 2009), a memetic algorithm (Armentano & Mazzini,
2000; Franca et al., 2001; Rubin & Ragatz, 1995), a simulated annealing (Tan & Narasimhan,
1997), a GRASP (Gupta & Smith, 2006), an ant colonies optimization (ACO) (Gagné et al.,
2002; Liao & Juan, 2007) and a Tabu/VNS (Gagné et al., 2005). Heuristics such as Random
Start Pairwise Interchange (RSPI) (Rubin & Ragatz, 1995) and Apparent Tardiness Cost with
Setups (ATCS) (Lee et al., 1997) have also been proposed for solving this problem. For their
part, Sioud et al. (2010) introduce a constraint based programming approach proposing an
ILOG API C++ model.

Concerning the genetics algorithms (GA), only Sioud et al. (2009) succeeded in proposing an
efficient GA, suggesting that this metaheuristic is not well suited to deal with the specificities
of this problem. Indeed, the authors have proposed a GA integrating the RMPX crossover
operator which takes greater account of the relative and absolute position of a job. Indeed,
Armentano & Mazzini (2000); Rubin & Ragatz (1995); Tan & Narasimhan (1997) have shown
the importance of relative and absolute order positions for solving the 1|sij|ΣTj problem. The
proposed GA outdoes the performance of all the GAs found in the literature but is still less
efficient than the Tabu/VNS of Gagné et al. (2005) which represents the best approach found
in the literature.

The main purpose of this chapter is to show that GAs can be efficient approaches for solving
the 1|sij|ΣTj problem when the different mechanisms of the algorithm are specially design to
deal with the specificities of the problem. Indeed, in their respective works, Rubin & Ragatz
(1995) and Sioud et al. (2009) have shown the importance of relative and absolute order
positions for the 1|sij|ΣTj problem. Thereby, all the used crossover operators into the genetic
algorithms from literature maintain the absolute position, or the relative position or both.
So, to reach good results, the presented genetic algorithms must ensure the preservation of
both the relative and the absolute order positions while maintaining diversification during
their evolving. In this context, the presented algorithms will take this into consideration.
Indeed, we present, in this chapter, two hybrid GAs for solving the 1|sij|ΣTj where the
different mechanisms of the algorithms are specially design to deal with the specificities
of the problem. The first hybridization incorporates Constraint Based Scheduling (CBS) in
a GA. The hybridization of the CBS approach with the GA is done at two levels. Even,
the CBS is used in the reproduction and intensification processes of GA separately. The
second hybridization introduces a hybrid crossover in a GA. The proposed crossover uses
concepts from the multi-objective evolutionary algorithms and ant colony optimization. Both
hybridizations use the specificities of the problem to reach good results.

This chapter is organized as follows: Section 2 presents the used pure GA of Sioud et al. (2009).
Section 3 introduce the two hybrid algorithms. The computational testing and discussion are
presented in Section 4: we present several versions of hybridizations and compare our results
to the Tabu/VNS of Gagné et al. (2005). Finally, we conclude with some remarks and future
research directions.
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2. Genetic algorithm

Based on the GA proposed by Sioud et al. (2009), we define a simple genetic algorithm.
A solution is coded as a permutation of the considered jobs. The population size is set
to n to fit with the considered instance size. Sixty percent of the initial population is
generated randomly, 20% using a pseudo-random heuristic which minimizes setup times,
and the last 20% using a pseudo-random heuristic which minimizes the due dates. A
binary tournament selects the chromosomes for the crossover. The proposed GA uses the
OX crossover (Michalewicz, 1996) to generate 30% of offspring and the RMPX crossover
(Sioud et al., 2009) to generate the rest of the child population. The RMPX crossover can be
described in the following steps : (i) two parents P1 and P2 are considered and two distinct
crossover points C1 and C2 are selected randomly, as shown in Figure 1; (ii) an insertion point
pi is then randomly chosen in the offspring O as pi = random (n - ( C2 - C1)); (iii) the part [C1,
C2] of P1, shaded in Figure 1, is inserted in the offspring O from pi, from the position 2 shown
in Figure 1; and (iv) the rest of the offspring O is completed from P2 in the order of appearance
from its first position.

C1 C2

pi

Fig. 1. Illustration of RMPX

The crossover probability pc is set to 0.8, therefore n*0.8 offspring are generated at each
generation. A mutation is also applied with a probability pm equal to 0.3. The mutation
consists of exchanging the position of two distinct jobs which are randomly chosen. The
replacement is elitist and the duplicate individuals in the population are replaced by
chromosomes generated by one of the pseudo-random heuristics used in the initialization
phase.

3. Hybrid genetic algorithms

Several researchers have attempted to relieve the metaheuristic shortcomings and limitations
by modifying the traditional executing for some problems. Indeed, to improve the
effectiveness of these methods, some researchers have used metaheuristics variations and
hybridizations (Puchinger & Raidl, 2005; Talbi, 2009). In general, hybridization combines two
or more methods in a single algorithm to solve combinatorial optimization problems. Hybrid
approaches in general and hybrid metaheuristics in particular are gaining popularity because
these approaches obtained the best results for several combinatorial optimization problems
(Jourdan et al., 2009; Talbi, 2009). Also, according to Blum et al. (2005), the hybridization
of metaheuristics is the most promising avenue for improving the quality of solutions in
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many real applications. Puchinger & Raidl (2005) divide hybrid methods into two categories
: collaborative and integrative hybridization. The algorithms that exchange information in
a sequential, parallel or interlaced way fall into the category of collaborative hybridization.
We talk about an integrative hybridization when a technique is an embedded component of
another technique. In this chapter, we introduce first a collaborative hybridization which
incorporates CBS approach with the GA at two levels. Indeed, the CBS is used in the
reproduction and intensification processes of GA separately. In fact, the CBS approach
is integrated in a crossover operator and in the intensification search space process using
additional constraints for both of them. Second, we introduce an integrative hybridization at
a new hybrid crossover, integrating concepts from two different techniques: archives as in the
multi-objective evolutionary algorithms and a transition rule as in ant colony optimization.

3.1 The collaborative hybrid genetic algorithm

Constraint solving methods such as domain reduction and constraint propagation have
proved to be well suited for a wide range of industrial applications (Fromherz, 1999).
These methods are increasingly combined with classical solving techniques from operations
research, such as linear, integer, and mixed integer programming (Talbi, 2002), to yield
powerful tools for constraint-based scheduling by adopting them. The most significant
advantage of using such CBS is to separate the model from the algorithms which solve
the scheduling problem. This makes it possible to change the model without changing the
algorithm used and vice versa.

In the recent years, the CBS has become a widely used form for modeling and solving
scheduling problems using the constraint programming approach (Allahverdi et al., 2008;
Baptiste et al., 2001). A scheduling problem is the process of allocating tasks to resources over
time with the goal of optimizing one or more objectives (Pinedo, 2002). A scheduling problem
can be efficiently encoded like a constraint satisfaction problem (CSP).

The activities, the resources and the constraints, which can be temporal or resource related, are
the basis for modeling a scheduling problem in a CBS problem. Based on representations and
techniques of constraint programming, various types of variables and constraints have been
developed specifically for scheduling problems. Indeed, the domain variables may include
intervals domains where each value represents an interval (processing or early start time for
example) and variable resources for many classes of resources. Similarly, various research
techniques and constraints propagation have been adapted for this kind of problem.

In Constraint Based Scheduling, the single machine problem with setup dependent times can
be efficiently encoded in terms of variables and constraints in the following way. Let M be the
single resource. We associate an activity Aj for each job j. For each activity Aj four variables
are introduced, start(Aj), end(Aj), proc(Aj) and dep(Aj). They represent the start time, the end
time, the processing time and the departure time of the activity Aj, respectively. The departure
time represents the needed setup time of an activity when the latter starts the schedule.

Figure 2 presents the pseudo-code for the 1|sij|ΣTj problem modeling with the C++ API
of ILOG Scheduler 6.0. The main procedure ModelSMSDST calls the two procedures
CreateMachine and CreateJob. CreateMachine procedure (lines 3 to 6) uses the class
IloUnaryResource. This allows handling unary resources, that is to say, a resource whose
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L1     Modeling SMSDST :
L2
L3         procedure CreateMachine (SetupMatrix) 
L4             Create the setup matrix parameter
L5             Create the single machine and associate the setup matrix parameter
L6 end CreateMachine()
L7
L8         procedure CreateJob (ProcessingTimes, StartingTimes, type)
L9             Create a job with a type and processing time
L10            Set a starting time for the created job
L11        end CreateJob()
L12
L13       procedure ModelSMSDST(ProcessingTimes, StartingTimes, DueDates SetupMatrix)
L14 CreateMachine(SetupMatrix)
L15 Define an array for the jobs completion time C
L16           Define a variable for the total tardiness Tard
L17           for each i in NB_JOBS do
L18  job      CreateJob (ProcessingTimes, StartingTimes, i)
L19               C[i]     max(0, job.end - DueDates[i])
L20           end for
L21 Tard      Sum(C) 
L22           Minimize (Tard)
L23       end ModelSMSDST

Fig. 2. C++ API model for the 1|sij|ΣTj problem

capacity is equal to one. This resource cannot therefore handle more than one job at a time.
The use of the setup times in CBS and also with ILOG Scheduler (ILOG, 2003a) indicates that
they are resource-related and not activity-related such as is the case in our problem. It is
possible to overcome this problem by associating a type for each activity and creating setup
times associated with these types. For this purpose, we use the class IloTransitionParam which
is managing and setting setup times. The setup matrix is then associated to this class which
will be related to the unary machine (line 5). Thus, when we calculate the objective function,
it is possible to associate the setup times between two distinct types of activities. To model
the total tardiness, we must first define a variable Tard (line 16). Then we define an array
C containing the completion times Ci of the different activities times Ai during the research
phase (line 15). When we create the activities in the model, we add a constraint that combines
the activities Ai to the corresponding times Ci (line 19). After that, we add a constraint which
combines the variable Tard with the sum of the Ci in the table C (line 21). Finally, we add a
constraint that minimizes the variable Tard (line 22). Thus, we obtain the objective function
which will be added to the model.

ILOG Solver (ILOG, 2003a) provides several predefined search algorithms named as goals and
activity selectors. We used the IloSetTimesForward algorithm with the IloSelFirstActMinEndMin
activity selector. The IloSetTimesForward algorithm schedules activities on a single machine
forward initializing the start time of the unscheduled activities. The activity selector defines
the heuristic scheduling variables representing start times, which chooses the next activity
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to schedule. The IloSelFirstActMinEndMin tries first the activity with the smallest start time
and in case of equality the activity with the smallest end time. For his part, ILOG Scheduler
(ILOG, 2003b) provides four strategies to explore the search tree : the default Depth-First Search
(DFS), the Slice-Based Search (SBS) (Beck & Perron, 2000), Interleaved Depth-First Search (IDFS)
(Meseguer, 1997) and the Depth-Bounded Discrepancy Search (DDS) (Walsh, 1997) which is used
in this work.

The hybridization of an exact method such as the CBS and a metaheuristic such as the
GA can be carried out in several ways. Talbi (2002) presents a taxonomy dealing with the
hybrid metaheuristics in general. Puchinger & Raidl (2005) and Jourdan et al. (2009) present
a taxonomy for the exact methods and metaheuristics hybridizing. In this chapter we present
two different approaches of hybridization. The first approach is to integrate the CBS in the GA
reproduction phase and more precisely in a crossover operator, while the second approach is
to use CBS as an intensification process in the GA.

When we handle a basic single machine model, there is no precedence constraint between
activities as is the case in a flow-shop or job-shop where adding constraints improves the
CBS approach. The main idea of integrating the CBS in a crossover is to provide to this
latter precedence constraints between activities when generating offspring. In this work, we
consider only the direct constraints during the crossover. Therefore, the conceived crossover
promotes the relative order positions such as the PPX crossover (Bierwirth et al., 1996). The
proposed crossover operator is designated Indirect Precedence Constraint Crossover (IPCX) and
can be described in the two following steps : (i) all individuals in the current population
are considered and the indirect precedence constraints between jobs concurrently in all the
individuals are kept, as shown in Figure 3; and (ii) the CBS approach tries to solve the
problem while adding the indirect precedence constraints built in the previous step and an
upper bound consisting of the objective function value of the best parent. The upper bound
is added to discard faster bad solutions when branching during the solver process. As a
reminder, the ILOG Solver uses a Branch and Bound approach to solve a problem (ILOG,
2003b).

In the case of Figure 3,we consider a population with 4 individuals. Only the three indirect
precedence constraints (1 before 6), (8 before 2) and (9 before 7) are in the four individuals. So
these three indirect constraints are added to the model and will be propagated. Thus, they
preserve the relative positions of the pairs of activities (1,6), (8,2) and (9,7). After that, in a
potential offspring we will find this indirect precedence constraints. Finally, if no solution
is found by the IPCX crossover, the offspring is generated by one of the pseudo-random
heuristics used in the initialization phase. The IPCX crossover will be done under probability
pIPCX.

Integrating an intensification process in a genetic algorithm has been applied successfully in
several fields. The incorporation of heuristics and/or other methods, i.e. an exact method
such as the CBS approach, into a genetic algorithm can be done in the initialization process to
generate well-adapted initial population and/or in the reproduction process to improve the
offspring quality fitness. Following this latter reasoning, the strategy proposed in this section
is based on the intensification in specific space search areas. However, we can find in literature
only few papers dealing with such hybridization Puchinger & Raidl (2005); Talbi (2009).
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1

Fig. 3. Illustration of IPCX

In the same vein of the IPCX conservation precedence constraints, an intensification process is
applied by giving a generated offspring to the CBS approach and fixing a block of α positions.
Thus, the absolute order position will be preserved for these fixed positions while the relative
order position will be preserved for the other activities. Indeed, the activities on the left of
the fixed block will be scheduled before this late block, while the activities on the right will
be scheduled after this block. The fixed block size should be neither too large nor too small
: if its size is too large, the CBS approach will have no effect and if its size is too small the
CBS approach will consume more time to find a better solution. Thereby, at each time this
intensification is done, α continuous positions are fixed with 0.2*n ≺ α ≺ 0.4*n. We use to
this end two different procedures based on the CBS approach. The first one, noted as IPTARD ,
selects a generated offspring and tries to solve the problem using the CBS approach which
minimizes the total tardiness described above while adding an upper bound consisting of the
objective function value of this offspring. So as a result, the CBS approach may return a better
solution when scheduling separately the activities on the left and the right of the fixed block
activities.

Using the similarity of the studied problem with the time-dependent traveling salesman
problem (Bigras et al., 2008), the second intensification procedure, noted as IPTSP, works
like IPTARD but in this case the CBS approach minimizes the makespan. The makespan
optimization aims to minimize the setup times and then, in some specific configurations,
will give promising solutions under total tardiness optimization otherwise explore a different
areas search space. The makespan criterion is represented by an additional variable
Makespan. Its value is determined by Makespan = ∑n

Aj=1 max(end(Aj)). The model
minimizing the makespan is similar to that in Figure 2. Indeed, we just delete the declaration
of the array C at line 15 and define an activity Makespan with time processing equal to 0 at
line 16. Then, a constraint stating that all jobs must be completed before the Makespan start
time is added in the loop. Finally, lines 19 and 21 are removed and line 22 minimizes in this
case the Makespan end time.

Thereby, an offspring is selected with a tournament under probability pIP and then, one of
the two intensification procedures IPTARD and IPTSP is chosen under probability pcip to be
applied on this offspring. Figure 4 illustrates the intensification process based on the CBS
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Population (t)
Tournament selection 
under probability pIP

Final offspring Choose and apply an intensification 
procedure under probability pcip

fixed positions

Fig. 4. The intensification process

approach. At each generation, an offspring is selected under probability pIP with tournament
selection. After fixing α positions and choosing an intensification procedure, IPTARD or IPTSP
under probability pcip , the solver tries to find a solution. If no solution is found the offspring
is unchanged.

3.2 The integrative hybrid genetic algorithm

In this section, we introduce the integrative hybrid genetic algorithm which integrates concept
from two different techniques : archives as in the multi-objective evolutionary algorithms and
a transition rule as in ant colony. This hybridization is done in a crossover noted as ICX which
evolves in two step : (i) from the first parent, we place the cross section, which represents
the section between the two crossover points as the RMPX crossover processing; (ii) use a
transition rule to fill the remaining jobs using two lists formed from the second parent.

The transition rule is used in the ICX crossover operator as a mechanism taking into account
the problem’s properties and memory information. After defining the cross section (jobs
set from the first parent), the filling section (jobs set from the second parent) is completed
using a transition rule adapted to the 1|sij|ΣTj problem, similar to that used by the ant colony
optimization (ACO) (Dorigo & Gambardella, 1997) and inspired by the work of Gagné et al.
(2002).

From an identified cross section (section from the first parent), it is possible to insert the jobs
to the right of this section from the latest job as a classical ant or inversely to the left. First, the
number of jobs to be inserted on the right and left of the cross section are determined. Then,
two lists from the second parent are built: a job list which will be inserted on the left of the
cross section and a jobs list which will be inserted on the right. From the beginning of the
second parent, the left list is formed by the jobs not yet placed according to the jobs number
to be placed on the left, and the rest of the jobs not yet placed form the right list. In Figure 5
we consider the two parents P1, P2 and the offspring O. Both three positions remain unfilled
on the left and on the right of the cross section. Looking through the parent P2, the left list is
then formed by jobs 9, 5 and 7 while the right one is formed by jobs 3, 1 and 4.

Firstly, we consider the job insertions on the right of the cross section. The second case, very
similar to the first, requires only few changes and is subsequently treated further. From the
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Fig. 5. List construction for the transition rule step
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last inserted job, the choice of the next job is made using the pseudo-random-proportional
transition rule expressed in Equations (1) and (2). As in an ACO, in Equation (1), q is a
random number and q0 is a parameter; both are between 0 and 1. The parameter q0 determines
the relative importance of the existing information exploitation and the new solutions search
space exploration. Indeed, Equation (2) states that the next job will be chosen by a greedy rule
when q ≤ q0 or by the probabilistic rule of Equation (2) when q > q0. Equation (2) describes
the biased exploration rule pij adapted to the 1|sij|ΣTj problem when inserting job j after job i.

In Equations (1) and (2), the element sij=sij/MAX sij are the relative setup times and represents
the visibility as in the ACO of Gagné et al. (2002).

We describe in the following, the other two elements of Equations (1) and (2) where two new
concepts are introduced : SUCCij(At) which represents the pheromone trail as in an ACO and
Uij which represents an heuristic for look-ahead information.

In an classical ACO, the pheromone trail contains information based on solution quality.
Indeed, in the pheromone matrix, if the intensity of the pheromone value between two jobs
i and j increases, then the probability to insert j after i increases. In our case, we construct a
matrix SUCC from an archive that stores the best solutions throughout the evolution process
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as in some cases in multi-objective evolutionary algorithms using the Pareto-optimal concept
(Zitzler & Thiele, 1999). This archive is updated at every new offspring creation. The archive
size, denoted as N, is equal to the problem size and contains the N best individuals found
during the genetic algorithm search.

If n is the number of jobs processed and the archive size, the matrix SUCC is calculated as
follows:

For every jobs pair (i, j) where i ∈ [1, n] and j ∈ [1, n]

SUCC[i][j] =
number of times that j immediatly succeeds i

n
(3)

Thereby built from the archive individuals, the SUCC matrix will contain the trail information.
Thus, the more job j succeeds job i in the archive individuals, the more important the trail is.
This information, then favors the succession of job j after job i in the transition rule. This matrix
is calculated as needed from the archive and is updated at each archive update. Consequently,
in Equations (1), SUCCij(At) represents the trail quantity that job j immediately succeeds job
i in the archive at time t.

In Gagné et al. (2002), the authors have considered a lower bound determined by the tardiness
sum of the sequenced jobs and an estimate for the not yet sequenced jobs, as proposed by
Ragatz (1993). This lower bound is used as a look ahead function to anticipate the choice of
an ant and it is incorporated in the transition rule of their ACO. In this present integrative
hybridization, we propose to use an heuristic that also anticipates the choices in the transition
rule. However, this heuristic is based on an upper bound of the total tardiness. Indeed,
considering a defined cross section in an empty job sequence, we use this heuristic noted
as Uij for successively placing the jobs on the right of the cross section first until the end of the
sequence. Placing the jobs on the right is very similar and needs only few changes.

Starting from a partial sequence where only the cross section is defined, the heuristic uses
the maximum values of processing time p(max) and setup times sij (max) and the minimum
due dates d(min) in its calculation to complete the empty positions. Thus, we consider a job
sequence Q where a cross section is defined and Q = [q0, q1,..., qn−1, qn] where qj is the subscript
of the jth job in the sequence. Thereby, the completion time of the jth job in sequence will
be expressed as Cqj (max) = ∑

j
k=1(sqk−1qk (max) + pqk (max)) while the tardiness of the jth job

in sequence will be expressed as Tqj (max) = max(0, Cqj (max) − dqj (min)). In these last two
equations, the exact values of processing time, due dates and setup times are used instead the
maximum or minimum values for the cross section jobs which are already placed. So, if we
want to place a job j immediately after the cross section last job i, then Uij will be defined as
∑n

j=1 Tqj (max).

To better understand how this heuristic works, consider the 9-job example in Figure 6. The
first table in this figure shows the respective processing times pj and due dates dj.

The second table in Figure 6 presents a partial sequence with only the cross section composed
of jobs 2, 5 and 8. The processing time, the related setup times (s2−5 and s5−8) and due dates
of jobs 2, 5 and 8 are used to calculate ∑n

j=1 Tqj (max). We suppose that the right list contains
jobs 1, 3, 6 and 7. So, the left list contains the two remaining jobs 9 and 4. Considering the
right section filling, we use the maximum values of processing times p (max) (the maximum
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Job j 1 2 3 4 5 6 7 8 9
p j 102 100 97 99 96 102 97 107 100
d j 640 596 602 585 625 635 616 645 608

Q - - 2 5 8 - - - -
C j 120 240 360 456 568 690 812 934 1056
d j 585 585 596 625 645 602 602 602 602

0 0 0 0 0 88 210 332 454 1084

Q - - 2 5 8 1 - - -
Cj 120 240 360 456 568 680 802 924 1033
dj 585 585 596 625 645 640 602 602 602

0 0 0 0 0 40 200 322 431 993

Q 2 5 8 6
Cj 120 240 360 456 568 686 803 920 1037
dj 585 585 596 625 645 635 602 602 602

0 0 0 0 0 51 201 318 435 1005

Q 2 5 8 7
Cj 120 240 360 456 568 666 788 910 1032
dj 585 585 596 625 645 616 602 602 602

0 0 0 0 0 50 186 308 430 974

Q 2 5 8 3
Cj 120 240 360 456 568 670 792 914 1036
dj 585 585 596 625 645 602 616 616 616

0 0 0 0 0 68 176 298 420 962

 =  U ij

 =  U ij

 =  U ij

 =  U ij

jqT

jqT

jqT

jqT

jqT

n

j
jqT

1
(max)

n

j
jqT

1
(max)

n

j
jqT

1
(max)

n

j
jqT

1
(max)

n

j
jqT

1
(max)

Fig. 6. Hij example

processing time of the right list jobs, here 102) and setup times sij (max) and the minimum due
dates d(min) (the minimum due date of the right list jobs, here 602) of the jobs in the right
list jobs. We suppose also that the maximum setup times is equal to 20. For the left section
filling the maximum values of processing times p (max) equal 100 (the maximum processing
time of the left list jobs) the maximum setup times sij (max) also equal 20 and the minimum
due dates d(min) equal 585 (the minimum due date of the left list jobs). We obtain an upper
bound ∑n

j=1 Tqj (max) which equal 1084.

Then for each remaining job in the right list, the heuristic Uij is calculated. So, the respective
processing time, due date and setup times following the job 8 (s8−∗) are updated and the total
tardiness is calculated. For example, if we suppose that job 1 is directly inserted after the cross
section and that s8−1 is equal to 10, then we obtain the third table in Figure 6. In this partial
sequence, we update the setup times s8−1 (10 instead of 20) and the due date (640 instead
602). By inserting job 1, the heuristic Uij value equal 993. If we suppose now that job 3 is
directly inserted after the cross section and that s8−3 is equal to 5, then we obtain the last table
in Figure 6. In this partial sequence we update the setup times s8−3 (5 instead of 20) and the
minimum due date d(min) for the remaining jobs (616 instead 602). For this case, the heuristic
value Uij equal 962. The fourth and fifth tables in Figure 6 represent the insertion of the jobs 6
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and 7 directly after the cross section, respectively. The heuristic value Uij equal 1005 and 974,
respectively.

The normalized values Uij=Uij/MAX Uij are then used in Equations (1) and (2) to determine
which job will be placed. Thus, in the previous example, we obtain U8−1 = 0.98, U8−3 = 0.95,
U8−6 = 1 and U8−7 = 0.97. It is obvious that the higher the normalized value, the lower the
probability of placing job increases.

Since the cross section is already placed, placing the remaining jobs on the left of this section
can be done either from the first offspring position from left to right as a classical ant or
inversely from the first cross section position. In both cases, we will have a resulting setup
time either at the junction with the cross section if we proceed from left to right, or with the
latest job of the previous period (the initial setup time) if we proceed from right to left. During
the application of the hybrid crossover ICX, we use equiprobable one of the two methods of
left insertion.

In the case of placing jobs from right to left, we make some changes in Equations (1) and
(2). Indeed, sij and Uij are replaced by sji and Uji, respectively. Also, the matrix SUCCij(At)

is replaced by PREDij(At) = TSUCCij(At), the transposed matrix of SUCCij(At) from the
archive A. In fact, the trace must be built from relevant information related to the predecessors
in this case.

So, with these elements, this transition rule uses past, present and future information from
the archive, the visibility and the look ahead, respectively. The transition rule is used in this
way for all job insertions until the end of the sequence. Finally, the parameters α, β and φ
associated with each transition rule matrix in Equations (1) and (2), can privilege certain
elements depending on the characteristics of the problem.

4. Computational results and discussion

The benchmark problem set consists of eight instances, each with a number of jobs of
15, 25, 35 and 45 jobs, and it is taken from the work Ragatz (1993). These instances
are available on the Internet at https://www.msu.edu/~rubin/files/c&ordata.zip. The job
processing times are normally distributed with a mean of 100 time units and the setup
times are also uniformly distributed with a mean of 9.5 time units. Each instance has
three factors which have both high and low levels. These factors are due date range,
processing time variance and tardiness factor. The tardiness factor determines the expected
proportion of jobs that will be tardy in a random sequence. The second instance subset,
taken from the work of Gagné et al. (2002), consists of eight instances each with 55, 65,
75 and 85 jobs. These instances which are called ”large instances set” are available at
http://wwwdim.uqac.ca/∼c3gagne/DocumentRech/ProblemDat
aSet55to85.zip. These instances are also generated similarly as in the smaller instances. All the
experiments were run on an Itanium with a 1.4 GHz processor and 4 GB RAM. Each instance
was executed 10 times and all the algorithms are coded in C++ language and under the ILOG
IBM CP constraint environment using ILOG Solver and Scheduler via the C++ API (ILOG,
2003a;b) for the CBS approach. In order to obtain a reliable comparison, the stop criterion for
all the proposed algorithms is 50 000 evaluations. This criterion is used by the Tabu/VNS
of Gagné et al. (2005) which represents the best approach found in the literature. First, we

210 Real-World Applications of Genetic Algorithms



Hybrid Genetic Algorithms for the Single Machine Scheduling Problem with Sequence-Dependent Setup Times 13

CGAIPCX CGAIP CGACOL IGAL-R IGAR-L IGAOrOpt

401 90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
402 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
403 3418 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0
404 1067 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
405 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
406 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
407 1861 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
408 5660 0.0 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0
501 261 0.0 0.4 0.0 0.5 0.0 0.0 0.0 0.0 0.0
502 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
503 3497 0.0 2.5 0.0 0.3 0.0 0.0 0.0 0.0 0.0
504 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
505 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
506 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
507 7225 0.0 1.8 0.0 0.7 0.0 0.0 0.0 0.0 0.0
508 1915 0.0 35.8 0.0 1.8 0.0 0.0 0.2 0.0 0.0
601 12 16.9 41.7 5.7 7.5 2.4 1.0 1.7 0.0 0.0
602 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
603 17587 0.2 6.5 0.8 1.1 0.2 0.0 0.0 0.0 0.0
604 19092 0.2 21.1 0.9 1.3 0.5 0.0 0.0 0.0 0.0
605 228 1.3 122.4 2.6 3.5 0.3 1.0 0.4 0.0 0.0
606 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
607 12969 0.2 17.7 0.6 1.9 0.2 0.0 0.0 0.0 0.0
608 4732 0.2 156.6 0.5 1.2 0.0 0.0 0.0 0.0 0.0
701 97 3.0 20.6 5.3 8.3 2.1 1.2 1.0 0.6 0.3
702 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
703 26506 0.2 2.8 1.2 1.8 0.7 0.0 0.0 0.0 0.0
704 15206 0.3 94.8 1.3 2.1 0.5 0.2 0.2 0.0 0.0
705 200 3.4 72.5 3.2 6.5 1.1 2.3 1.0 0.4 0.2
706 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
707 23789 0.2 20.4 1.0 1.9 0.3 0.0 0.0 0.0 0.0
708 22807 0.3 50.0 1.4 2.1 1.0 0.0 0.0 0.0 0.1

PRB OPT GA CBS TVNS
Collaborative hybridization Ingrative hybridization

Table 1. Comparison of different approaches for the small problem set

discuss the collaborative and integrative hybridization on the small instances, then only the
integrative genetic algorithm on the large instances.

Table 1 compares the results of different approaches and the best results are shaded. In this
table, PRB denotes the instance names and OPT the optimal solution found by the B&B of
Bigras et al. (2008). These authors have not given information about the execution time of
their approach. They only said that some instances have been resolved after more than seven
days. The GA column shows the results average deviation to the optimal solution of the
genetic algorithm described in the section 3.1 which gives the best results among all genetic
algorithms in the literature without an intensification process (Sioud et al., 2009). The GA
average CPU time is equal to 13.4 seconds for the 32 instances. The GA generally obtained
fairly good results only for the instances 601, 605, 701 and 705. These instances are low due
date range and large tardiness factor. Thus, for this kind of instances, "good" solutions may
not generate "good" offspring. Furthermore, considering that the tardy jobs are scheduled
at the end of the sequence, it may be sufficient to schedule the other jobs by minimizing

211
Hybrid Genetic Algorithms for the Single Machine 
Scheduling Problem with Sequence-Dependent Setup Times



14 Will-be-set-by-IN-TECH

the setup times. It is the aim of introducing the IPTSP intensification procedures. The CBS
column shows the deviations of the CBS approach minimizing the total tardiness defined in
Section 3.1. For this approach, the execution time is limited to 60 minutes. It can be noticed
that the CBS approach results deteriorate with increasing the instances size and especially
for the **4, **5 and **8 instances. The CGAIPCX column shows the average deviation of the
genetic algorithm in which the crossover operator IPCX is integrated. The probability pIPCX
is equal to 0.2 and the CBS approach execution time is limited to 15 seconds. The CGAIPCX
average time execution is equal to 12.8 minutes for the 32 instances. The first observation
is that the CGAIPCX algorithm is always optimal for 15 and 25 jobs instances. It should be
noted that the integration of the IPCX crossover improves all of the GA results and especially
for the instances **1 and **5 where the deviation became less than 6%. For example, the
deviation was reduced from 16.9% to 6.7% for the 601 instance. Using the direct precedence
constraints allows the PCX crossover to enhance both the GA exploration and the CBS search;
and consequently reaching better schedules.

The CGAIP column shows the average deviation of the genetic algorithm in which we include
the IPTard and IPTSP intensification procedures under probability pIP equal to 0.1. The CBS
approach execution time is limited to 20 seconds for the IPTard and IPTSP. The CGAIP average
time execution is equal to 13.5 minutes for the 32 instances. The CGAIP improves most GA
results and specially the **1 and **5 instances but gives worse results than the CGAIPCX and
this was expected because in 50% of the cases the intensification procedure minimizes the
makespan and not the total tardiness. The CGACOL column shows the average deviation
of the GAPCX algorithm where we include the IPTard and IPTSP intensification procedures.
The probabilities pIP and pcip are equal to 0.1 and 0.5 respectively like the CGAIP. The CBS
approach execution time is also limited to 20 seconds for the IPTard and IPTSP in the CGACOL.
The CGACOL average time execution is equal to 20.5 minutes for the 32 instances. This hybrid
algorithm improves all the results found by the CGAIPCX. These improvements are more
pronounced with the integration of local search procedures. The introduction of the two
intensification procedures improves essentially the **1 and the **5 instances. Also, the optimal
schedule is always reached by CGACOL for the 608 instance. The CGACOL found the optimal
solution for all the instances at least one time and this was not the case either for CGAIPCX or
CGAIP.

The convergence of both GA and the CGAIPCX algorithms are similar. Indeed, the average
convergence generation is equal to 1837 and 1845 generations for GA and CGAIPCX,
respectively. Concerning the CGAIP algorithm, the average convergence generation is equal
to 1325 generations. So, we can conclude that the two intensification procedures based on the
CBS approach are permitting a faster genetic algorithm convergence than the IPCX crossover
but achieving worse results. The CGACOL average convergence generation is equal to 825 and
compared to the CGAIPCX, the introduction of the intensification procedures speeds up the
convergence of the solution with reaching better results.

Exact methods are well known to be time expensive. The same applies to their hybridization
of them with metaheuristics. Indeed, times execution increases significantly with such
hybridization policies due to some technicality during the exchange of information between
the two methods (Jourdan et al., 2009; Puchinger & Raidl, 2005; Talbi, 2002; 2009) and this
is what has been observed here. However, in this chapter, the solution quality is our main
concern. So, we concentrated our efforts on it. Then, because the high consuming time and
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memory, the collaborative algorithm will not be applied on the large problem set. Finally,
we are also aware of the fact that we can’t compare the collaborative hybridization with the
other approaches because the CBS approach executes more than the 50 000 stop criterion
evaluations.

The two row noted as IGAL−R and IGAR−L present the results of the genetic algorithm where
the hybrid crossover ICX is integrated and the filling section placement is executed by the
transition rule, respectively, on the left then on the right (IGAL−R) and on the right then on
the left (IGAR−L). The purpose of this comparison is to show the impact of the look ahead
element Uij in the transition rule.

Indeed, if the results of the two algorithms outperform those of IGA1−2, those of IGAR−L

are better than those of IGAL−R, and specially for instances of type **1 and **5. This can be
explained by two aspects: (i) in both cases, the look-ahead element Uij improves the search
for jobs to be placed, by calculating the impact of placing a job in a sequence where some jobs
are already placed; and (ii) starting to place jobs on the right allows the transition rule to be
more directive concerning the jobs in the beginning of the sequence, specially for instances
of **1 and **5 where tardy jobs are usually at the end of the sequence. Similarly, the trace
elements, SUCCij(At) and PREDij(At) built from the archive, play an important role to guide
the transition rule in order to maintain and preserve the relative order according to an already
placed job. Finally, IGAR−L finds optimal solutions at least once except for the instance 704,
which is not the case for IGAL−R.

The row noted as IGAOrOpt presents the results of the genetic algorithm IGAR−L where a
local search is applied at each offspring creation under probability equal to 0.1. The used local
search heuristic in this case is the or-opt (Or, 1976) adapted to the total tardiness. This heuristic
is also used by the Tabu/VNS of Gagné et al. (2005) whose results are summarized in the last
row in Table 1 and noted as TVNS. In this hybrid algorithm, at each call to the heuristic, we
generate a single neighborhood of size 40. The integration of the local search allows the hybrid
genetic algorithm to have similar results to those of the Tabu/VNS and improve some average
results for instances 604, 607, 701, 703, 704, 705 and 708. The Tabu/VNS achieved better
performance only for instances 601 (0.0 against 0.0) and 605 (0.0 against 1.0). Concerning the
integrative hybridization execution times, IGAL−R, IGAR−L and IGAOrOpt have an average
of 1.6, 1.6 and 2.1 minutes respectively on the small instances group.

Table 2 summarizes the comparison of different algorithms for the large instance set of
Gagné et al. (2005). The subrow noted as (B) and (M) present the best and the median
deviation of the presented algorithms, respectively. The best results of the B row are shaded
in dark gray and the best results of the M row are shaded in gray. Overall, we observe a
similar algorithm behavior as in the first group of instances. Indeed, IGAR−L, which gives
better results than HGAL−R. Indeed, placing jobs at the end of the sequence before those at
the beginning allows the hybrid crossover ICX better guiding for job placement using the look
ahead element Uij and the normalized setup times sij in the transition rule.

It should be noted that IGAR−L lowers the minimum known bound for instances 557 and
858. This can be explained by the nature of these instances and by the fact that the transition
rule uses the characteristics of the problems, including due dates and setup times, when
calculating the look ahead element Uij.

213
Hybrid Genetic Algorithms for the Single Machine 
Scheduling Problem with Sequence-Dependent Setup Times



16 Will-be-set-by-IN-TECH

B M B M B M B M B M
551 183 3.6 5.7 0.3 1.2 0.0 0.7 0.0 0.6 0.1 0.6
552 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
553 40540 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1
554 14653 0.3 0.5 0.1 0.3 0.1 0.1   0.0* 0.0 0.0 0.2
555 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
556 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
557 35813 0.2 0.3 0.0 0.1   0.0* 0.0   0.0* 0.0 0.0 0.0
558 19871 0.3 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1
651 268 1.6 4.3 0.0 1.0 0.0 0.9 0.0 0.3 0.0 0.2
652 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
653 57569 0.2 0.3 0.0 0.2 0.0 0.1 0.0 0.1 0.0 0.1
654 34301 0.4 0.6 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1
655 2 120.0 185.3 45.0 77.8 17.0 52.0 15.0 25.0 0.0 12.5
656 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
657 54895 0.2 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1
658 27114 0.4 0.5 0.0 0.3 0.1 0.1   0.0* 0.0 0.1 0.1
751 241 3.2 4.8 0.5 2.0 0.8 1.7 0.2 0.8 0.0 0.3
752 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
753 77663 0.3 0.4 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
754 35200 0.3 0.7 0.2 0.4 0.1 0.3   0.0* 0.0 0.1 0.3
755 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
756 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
757 59735 0.2 0.3 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.0
758 38339 0.3 0.5 0.1 0.3 0.1 0.2   0.0* 0.0 0.1 0.2
851 384 2.8 5.4 1.3 1.7 0.9 1.6 0.2 0.4 0.0 0.2
852 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
853 97642 0.3 0.4 0.1 0.2 0.3 0.1   0.0* 0.0 0.0 0.0
854 79278 0.4 0.5 0.2 0.3 0.1 0.2   0.0* 0.1 0.2 0.1
855 283 6.0 7.5 0.5 2.3 1.1 2.0 0.3 1.5 0.0 1.3
856 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
857 87244 0.3 0.4 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.1
858 74785 0.3 0.5 0.1 0.2   0.0* 0.1   0.0* 0.0 0.1 0.2

PRB OPT
GA IHGAL-R IHGAR-L IHGAOrOpt TVNS

* New lower bound

Table 2. Comparison of different approaches for the large problem set

Nevertheless, for all the introduced algorithms, there are still significant differences for
instances **1 and **5, and especially for instance 655 where it exceeds 75%. In these cases,
this is due to the low value of the objective function.

The local search integration in IGAOrOpt allows this algorithm to find six other new minimum
values for instances 554, 557, 658, 754, 758, 853 and 854. This intensification process improves
the genetic algorithm exploitation phase. Also, except for some deviations in instances **1
and **5, IGAOrOpt improves several averages of TABU/ VNS and specially for instances 654,
657, 658, 754, 758, 854 , 857 and 858. Except for the 655 instance, where the deviation is
25% for the average result, TABU/ VNS surpasses IGAOrOpt only in 7 instances (551, 651,
751, 753, 757, 851 and 855) and this with minor deviations. Of these 7 instances, 5 of them

214 Real-World Applications of Genetic Algorithms



Hybrid Genetic Algorithms for the Single Machine Scheduling Problem with Sequence-Dependent Setup Times 17

are **1 and **5 instances. Finally, in addition to the 8 new minimum values found, IGAR−L

and IGAOrOpt also found the best known value for instance 551 while TABU/VNS did not
find it. Concerning instances 653, 654 and 753, the best solutions are found by the GRASP of
Gupta & Smith (2006).

Concerning the execution times, IGAL−R, IGAR−L and IGAOrOpt have an average of 3.1,
3.1 and 3.9 minutes respectively. Furthermore, these execution times are increased by the
transition rule integration in IGAL−R and IGAR−L, and the archive management. Finally, the
or-opt local search heuristic increases the execution time by 20% for both the small and the
large instance group.

5. Conclusion

In this chapter, we have introduced two hybrid GA to solve the sequence-dependent setup
times single machine problem with the objective of minimizing the total tardiness. Indeed,
using classical operator, most found GA in literature are not well suited to deal with the
specificities of this problem. The proposed approaches in this chapter are essentially based on
adapting highly specialized genetic operators to the specificities of the studied problem. The
numerical experiments allowed us to demonstrate the efficiency of the proposed approaches
for this problem. A natural conclusion of these experimental results is that GA may be robust
and efficient alternative to solve this problem.

We describe first a collaborative hybridization where both a crossover operator and
intensification process based on Constraint Based Scheduling are integrated into a GA. Indeed,
the IPCX crossover operator uses the indirect precedence constraints to improve the CBS
search and consequently the schedules quality. The precedence constraints are built from
all the individual population in the reproduction process. The intensification procedures
are based on two different CBS approaches after fixing a jobs block : the first minimizes the
total tardiness which represents the considered problem objective function while the second
minimizes the makespan which also enhances the exploration process and is well adapted to
some instances.

Then, we introduce a hybrid crossover in an integrative hybridization which uses concepts
from multi-objective algorithms and ant colony optimization to enhance the relative and
absolute job position conservation during the evolving phase. The integrative hybridization
introduce the ICX crossover which evolves in two steps. Indeed, from the first parent we
place firstly the cross section. Then, from two lists formed with the remaining jobs, we use
a pseudo-random transition rule to place these jobs. This transition rule uses past, present
and future information from the archive, the visibility and the look ahead, respectively. The
different proposed adaptations have contributed to the performance of this approach. The use
of the archive and the look-ahead information have been shown to improve solution quality
also enhancing the relative and the absolute order.

The proposed hybrid GA in this chapter represent very interesting alternatives to find good
solutions. In fact, The found results highlight the importance of incorporating specific
problem knowledge and specificities into genetic operators, even if classical genetic operators
could be used. The two hybridizations have proved effectiveness on sets of benchmark
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problems taken from literature. Specially, the integrative one which even outdoes the
performance of the best approach found in the literature.

For future work, we will work on improving the precedence constraints under the
collaborative hybridization. Indeed, it is possible to consider constraints related to a jobs set
or to intervals time. Also, it would be possible to employ a chromosome representation based
on the start times of activities. Hence, it will be possible to get more accurate combination of
start times. Concerning the integrative hybridization, we use it for other scheduling problems
in particular and other optimization problems in general, specially real-world problems.
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1. Introduction 

The necessity of modeling is well established since the structural identification of a process 
is essential in analysis, control and prediction. Computer modeling is becoming an 
important tool in different fields in science including Biology. In Artificial Intelligence 
research, ‘intelligence’ is increasingly looked upon not as deliberative reasoning processes 
alone, but as the ability to exhibit adaptive behavior in a complex world. There have been 
extensive efforts in recent years to deploy population-based stochastic search algorithms 
such as evolutionary methods to design artificial neural networks since such evolutionary 
algorithms are  

particularly useful for dealing with complex problems having large search spaces with 
many local optima(Iba, etal,1996). In recent years, the use of artificial neural networks leads 
to successful application of different type of algorithm in a broad range of areas in 
engineering, biology, and economics in which GMDH-type is one. 

2. Genetic algorithms 

Nature employs the best cybernetic systems that can be conceived. In the neurological 
domain of living beings, the ecological balance involving environmental feedback, or the 
regulation of the temperature of the human body, are the examples of cybernetic systems of 
nature that are fascinating in their accuracy and efficiency (Madala and Ivakhnenko, 1994). 

In the 1950s and 1960s several computer scientists independently studied evolutionary 
systems with the idea that evolution could be used as an optimization tool for engineering 
problems in different systems (as a collection of interacting, diverse elements that function/ 
communicate within a specified environment to process information to achieve one or more 
desired objectives) (Mitchell and Forrest 1994). 

Evolution can be considered as the first and highest level of adaptation. It involves the 
adaptation of a species to global ecological and environmental conditions. This adaptation is 
a relatively slow process that operates over millennia, although the speed of genetic 
adaptation may differ widely for individual species.  
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Genetic algorithms (GAs) are currently the most prominent and widely used models of 
evolution in artificial-life systems. GAs have been used both as tools for solving practical 
problems and as scientific models of evolutionary processes. The intersection between GAs 
and artificial life includes both, although in this article we focus primarily on GAs as models 
of natural phenomena. Indeed GAs are optimization algorithms that work according to a 
scheme analogous to that of natural evolution. Literature review reveled that John Holland 
(Holland 1975) was the first who offered these principles of natural evolution to artificial 
systems, more precisely to optimization problems, and came up with the notion of GA. A 
general definition of these algorithms is (Koza 1980): 

“The genetic algorithm is a highly parallel mathematical algorithm that transforms a set 
(population) of individual mathematical objects (typically fixed length character strings 
patterned after chromosome strings), each with an associated fitness value, into a new 
population (i.e. the next generation) using operations patterned after the Darwinian principle of 
reproduction and survival of the fittest and after naturally occurring genetic operations (notably 
sexual recombination).” 

Genetic algorithms as defined by Goldberg (Goldberg, 1989) is: 

...search algorithms based on the mechanics of natural selection and natural genetics." 

Goldberg offers four differences between genetic algorithms and other search methods. 

1.  Genetic algorithms work with a coded parameter set. 
2. They search from a population of points in a solution space, rather than from a single 

point. 
3. They only use directly available information provided through a fitness function. 
4. They rely on probabilistic transition rules instead of deterministic rules. 

The success of nature in solving many problems nowadays recognized as very difficult for 
the traditional approaches, have led researchers into studying the biological example. In 
various abstractions and formalizations, biological systems have been theoretically proven 
to provide robust solutions to these hard problems. However the models used in the area of 
biological problems are complex, because of their characteristics and processes. This concept 
leads to the conclusion that the biological activity generates information with special 
features, most notable being the following (Fernández and Lozano, 2010): 

1. The obtained information from process presents a non-homogeneous structure since of 
the complexity of the objects alive. 

2. The information is emerging from the dynamics of change associated with the 
functional properties of the studied phenomena.  

What structure we need depends, of course, on our aims. We may distinguish roughly 
between operational and physiological models. An operational model aims to describe 
behavior realistically, but its structure is not intended to resemble the internal structure of 
particular biological system. Such models are often referred to as black box models to 
indicate lack of concern about underlying mechanisms. A physiological model, on the other 
hand, attempts to take into account more of the physiology that produces behavior, e.g., 
body and nervous system physiology (Dellaert, 1995 ). 
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3. Neural networks 

Our brain contains about 1011 neurons, each of which is connected to an average of 104 other 
neurons. This amounts to a total of 1015 connections. If these billions of connections were 
fully random, it can be shown that the brain would be many times larger than it actually is 
(Happel and Murre, 1994). Massive regressive events of neuronal connectivity in the 
vertebrate nervous system can be seen as part of the development and maturation of neural 
functions. The neuron has set of nodes that, connects it to inputs, output, or other neurons, 
these nodes are also called synapses (See Fig. 1). 

 
Fig. 1. Schematic structure of a Neuron 

A single neuron by itself is not a very useful pattern recognition tool. The real power of 
neural networks comes when we combine neurons into the multilayer structures, called 
neural networks (NN) (Fig. 2). 

 
Fig. 2. A Schematic representation of neural net 
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In a nutshell, a NN can be considered as a black box that is able to predict an output pattern 
when it recognizes a given input pattern. Once trained, the NN is able to recognize 
similarities when presented with a new input pattern, resulting in a predicted output 
pattern. The process of evolution is used as a ’real-world model’ that serves as a source of 
ideas for solving practical and theoretical problems in modeling and optimization.  

Researchers from a wide range of fields have discovered the benefits of applying NNs to 
pattern recognition problems in various systems (including biological system). Artificial NN 
(ANNs) is a system loosely modeled based on the human brain and are considered as a 
branch of the field known as "Artificial Intelligence" (AI). The techniques of AI is being 
applied in this field significantly in recent decades, and among them those known as ANNs, 
are characterized by their properties of learning and generalization. It’s often necessary to 
take into account their potential for induction, which can be implemented by software 
(Miroslav Šnorek, 2006).  

To understand behavior of model system, we need ways of describing behavior maps and 
state transition equations. Ideally, behavioral models should fulfill the following 
requirements (Dellaert, 1995): 

1. Versatility 
2. Robustness 
3. Learning 
4. Ontogeny 
5. Evolution 

NNs are a powerful technique to solve many real world problems. They have the ability to 
learn from experience in order to improve their performance and to adapt themselves to 
changes in the environment. In addition to that they are able to deal with incomplete 
information or noisy data and can be very effective especially in situations where it is not 
possible to define the rules or steps that lead to the solution of a problem. Once trained, the 
NN is able to recognize similarities when presented with a new input pattern, resulting in a 
predicted output pattern. NNs are applied in many fields to model and predict the behavior 
of unknown systems or systems with complexity (or both) based on given input–output 
data. Using NNs does not require a priori equation or model. This characteristic is 
potentially advantageous in modeling biological processes (Dayhof & DeLeo 2001).  

There are several methods to obtain inductive models. The Group Method of Data Handling 
methods, GMDH (Ivakhnenko AG, 1971) is well known and has recently gained popularity 
as a self-organizing and powerful tool to express complex input–output dependencies.  

4. Group Method of Data Handling method (GMDH) 

Generally, the connection between input-output variables can be approximated by Volterra 
functional series, the discrete analogue of which is Kolmogorov-Gabor polynomial. 
Ivakhnenko (Ivakhnenko, 1966), inspired by the form of Kolmogorov-Gabor polynomial, 
developed a new algorithm, known as Group Method of Data Handling (GMDH), which are 
also called inductive learning methods, self-organization, sorting out, and heuristic 
methods. This approach is substantially different from deductive methods used commonly 
for modeling. It has inductive nature, i.e., it finds the best solution by sorting-out of possible 
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variants. The framework of these methods differs slightly in some important respects 
(Madala and Ivakhnenko, 1994).  

A major difficulty in modeling complex systems in such unstructured areas as economics, 
ecology, sociology, and others is the problem of the researchers introducing their own 
prejudices model. In the mid 1960’s the Russian mathematician and cyberneticist, A.G. 
Ivakhnenko, introduced a method (Ivakhnenko, 1966), based in part on the Rosenblatt 
perceptron (Rosenblatt, 1958), that allows the researchers to build model of complex systems 
without making assumptions about internal working. The idea is to have the computer 
construct a model of optimal complexity based only on data and not on any preconceived 
ideas of the researchers; that is,by knowing only simple input-output relationship of the 
system. Ivakhnenko’s GMDH algorithm will construct a self-organizing model (an 
extremely high-order polynomial in the input variable) that can be used to solve prediction, 
identification, control synthesis, and other system problems (Farrow, 1981). 

The algorithm was developed for identifying nonlinear relationships between inputs and 
outputs. The algorithm provides an optimal structure, obtained in an iterative procedure of 
partial descriptions of the data by adding new layers. The number of neurons in each layer, 
the number of layers and the input variables are automatically determined to minimize a 
criterion of prediction error and thus organizes an optimal NN architecture using a self- 
heuristics, which is the basis of the GMDH algorithm. (Ivakhnenko,1971). This method is 
particularly successful in solving problems of modeling multiple entries for a single output 
(Mutasem, 2004). The main idea of GMDH is to build an analytical function in a feed-
forward network based on a quadratic node transfer function whose coefficients obtained by 
using a regression technique (Farlow, 1984). By means of the GMDH-type NN algorithm, a 
model can be represented as a set of neurons in which different pairs in each layer are 
connected through a quadratic polynomial and thus produce new neurons in the next layer, 
and therefore can be used to map inputs to outputs. Such an NN identification process 
needs some optimization method to find the best network architecture. This sub-model of 
ANN is considered as a Self - organizing approach by which gradually more complex 
models are generated from their performance evaluation (Lemke and Mueller, 2003). The 
unique feature of GMDH-type NN is that it facilitates, systematically and autonomously, 
developing optimal complex models by performing both variable and structure 
identification. 

Incorporating Genetic Algorithm to GMDH-type NNs, each neuron is represented as a 
string, which can be mutated or crossed with each other to form new generations. Thus GA 
has been used in feed-forward GMDH-type NN for each neuron searching its optimal set of 
connections with the preceding layer (Vasechkina & Yarin 2001; Nariman-Zadeh et al. 2003). 

 In the early stage of the development of GMDH theory the similarity between NNs and 
multilayer GMDH algorithms had been highlighted. (Ivakhnenko 1970) in one of the 
introductory articles claims that since the differences between perceptron and GMDH are 
neither significant nor fundamental it is appropriate to call GMDH systems as “systems of 
perceptron type”. 

During the modeling procedure, GMDH algorithm involves four heuristics that represent 
the main features of GMDH theory (Anastasakis and Mort, 2001): 
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1. Collect a set of observations that seems to be relevant to the object 
2. Divide the observations into two groups. The first will be used to estimate the 

coefficients of model while the second will separate the information embedded in the 
data into either useful or harmful. Strictly speaking: “no partition of the data, no 
GMDH”. 

3. Create a set of elementary functions where complexity will increase through an iterative 
procedure producing different models. 

4. Acording to Gödel’s incompleteness theorem, apply an external criterion to choose the 
optimum model. 

A detailed description of a GMDH-type NN terminology, development, application, and 
examples of using this approach were reported by several researchers (Farrow, 1984; 
Mueller and Lemke, 2000; Lemke and Mueller, 2003; Nariman-Zadeh et al., 2005). Recently 
the GEvoM software for GMDH-type NN training (GEvoM 2009) was developed in 
University of Guilan, Iran. 

5. Applications of GMDH-type algorithms in animal and poultry production 
systems 

Contributions to GMDH type of NN, have come from many research areas of different 
disciplines, and recently, the use of such self-organizing networks has led to a successful 
application of the GMDH-type algorithm in a broad range of areas in engineering, science, 
and economics (Amanifard et al., 2008). However, very little research has been conducted on 
modeling animal and /or poultry growth and production using ANNs. 

A series of studies have been conducted to examine the potential use of ANNs in various 
poultry subjects, such, prediction of ascites in broilers (Roush et al., 1996; Roush and 
Wideman,2000), the estimation of production variables in the production phase of broiler 
breeders (Salle et al., 2003), and the comparison of Gompertz and NN models of broiler 
growth (Roush et al., 2006). 

However no attempt was made to use GMDH-type NN in animal agriculture, until 2007, 
when the results of study was published based on the first work of my group in University 
of Guilan, Iran (Ahmadi, etal., 2007). The idea behind this work was that, when considering 
the effects of nutrition on broiler performance, several nutrients may influence the breast 
meat yield, feed : gain ratio, and number of days required to produce the market body 
weight; among them, Metabolizable Energy (ME) and Amino Acid(AA) , such as 
Lysine(Lys) and Methionine (Met) (Hruby and Hamre, 1996 ; Gous, 1998) . In terms of AA, 
whatever system is used to describe the essential AA requirements for broiler chickens, 
predicting the performance to be used in deciding the most advantageous dietary AA 
patterns in practical and useful terms is still difficult, even when the digestibility or 
availability of AA is specified (NRC, 1994; Sibbald, 1987 ]. This difficulty is partly due to the 
nonlinearity of growth responses related to changes in dietary AA concentrations [Hruby 
and Hamre, 1996, Phillips, 1981]. A more useful method is to model the system, which in 
turn requires an explicit mathematical input-output relationship. Such explicit mathematical 
modeling is, however, very difficult and is not readily tractable in poorly understood 
systems. Alternatively, soft-computing methods, which concern computation in an 
imprecise environment, have gained significant attention. One of the soft-computing 
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methods is ANNs, which have shown great ability in solving complex nonlinear system 
identification and control problems. 

The optimal structures of the evolved 2- hidden-layer GMDH-type NN that were suggested by 
GA for performance index (PI) as the system output modeling, were found with 2, 4, and 4 
hidden neurons for growth periods 1, 2, and 3, respectively. In the first period, the structure 
obtained appeared with the GA, which was less complex than in the second and third periods, 
in which the GA suggested 2 hidden neurons to fit the network. All models constructed from 
this data set were characterized by a superb response for all input variables from the learning 
set. The partial descriptions of the GMDH-type NN were found with 2 hidden layers and 2 
hidden neurons for growth period, whereas it appeared with 2 hidden layers and 4 hidden 
neurons for growth periods 2 and 3. In fact, these results revealed the quantitative relation 
between input (ME, Met, and Lys) and output (PI) variables under investigation, which meant 
GMDH-type NN may be considered as a promising method for modeling the relationship 
between dietary concentrations of nutrients and poultry performance, and therefore can be 
used in choosing and developing special feeding programs to decrease production costs. Also, 
it can enhance our ability to predict other economic traits, make precise predictions of the 
nutrition requirements, and achieve optimal performance in poultry production systems. The 
conclusion remarks of this study were reported as: 

4-1- Knowledge of an adequate description of broiler ME and AA requirements can help in 
establishing specific feeding programs, defining optimal performance, and reducing 
production costs. 

4-2- Calculated statistics indicate that GMDH-type NN provide an effective means of 
efficiently recognizing the patterns in data and predicting a PI based on investigating 
inputs. 

4-3- The genetic approach could be used to provide optimal networks in terms of hidden 
layers, the number of neurons and their configuration of connectivity, or both so that a 
polynomial expression for dependent variables of the process can consequently be achieved. 

4-4-The polynomials obtained could be used to optimize broiler performance based on 
nutritional factors by optimizing methods such as the GA. 

In animal and poultry production, feed composition is very important item for diet 
formulation. Since conventional laboratory techniques for feed analysis is expensive and time 
consuming, it would be advantageous if a simple means of estimating feed composition could 
be developed. One year after the first work another study (Ahmadi etal., 2008) was done. The 
purpose of this study was to examine the validity of GMDH-type NN with a genetic algorithm 
method to predict the True Metabolizable Energy corrected for nitrogen (TMEn) of feather 
meal and poultry offal meal (POM) based on their chemical analysis.  

All the previously TMEn prediction models reported for poultry by-product meals were 
based on the regression analysis methods using their CP, ether extract (EE), and ash content. 
In this study, a soft-computing method of artificial NN (ANN) seemed to be more 
appropriate for the TMEn prediction of a feedstuff.  

The parameters of interest in this multi-input, single-output system that influenced the 
TMEn were CP, EE, and ash content of the samples. The raw data were divided into 2 parts 
of training and validation sets. Thirty input-output data lines (12 from FM and 18 from POM 
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Samples ) were randomly selected and used to train the GMDH-type NN model as a 
training set. The validation set consisted of the 7 remaining data lines (3 from FM and 4 
from POM samples), which were used to validate the prediction of the evolved NN during 
the training processes. The data set was imported into a GEvoM for GMDH-type NN 
training (GEvoM, 2008). Two hidden layers were considered for prediction of the TMEn 
model. A population of 15 individual values with a crossover probability of 0.7, mutation 
probability of 

0.07, and 300 generations was used to genetically design the NN (Yao, 1999). It appeared 
that no further improvement could be achieved for this population size. A quantitative 
verifying fit for the predictive model was made using error measurement indices commonly 
used to evaluate forecasting models. The goodness of fit or accuracy of the model was 
determined by R2 value, adjusted R2, mean square error, residual standard deviation, mean 
absolute percentage error, and bias (Oberstone,1990). 

The results of this study revealed that the novel modeling of GMDH-type NN with an 
evolutionary method of GA can be used to predict the TMEn of FM and POM samples based 
on their CP, EE, and ash content( See Fig. 3). The advantage of using the GMDH-type NN to 
predict an output from the input variables is that there is no need to preselect a model or 
base the model entirely on the fit of the data. It is concluded that the GMDH-type NN may 
be used to accurately estimate the nutritive value of poultry meals from their corresponding 
chemical composition. 

 
Fig. 3. The comparison of observed and model predicted TMEn values obtained from 
training (1 to 12 and 13 to 30 are feather and offal samples, respectively) and validation  
(31 to 33 and 34 to 37 are feather and offal samples, respectively) sets. 
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The success of poultry meat production has been strongly related to improvements in 
growth and carcass yield, mainly by increasing breast proportion and reducing carcass fat.  

In addition to its measurement in the laboratory using wet chemistry, carcass composition 
of broiler chickens has been predicted by means of allometric equations, real-time 
ultrasonography, radioactive isotopes and specific gravity studies (Pesti & Bakalli 1997; 
Toledo et al.2004; Rosa et al.2007; Makkar 2008). Conventional laboratory techniques for 
determining carcass composition are expensive, cumbersome and time consuming. 
Therefore, it would be useful if a simple means of estimating carcass composition could be 
developed. In this respect, the potential advantages from modeling growth are considerable. 

Results obtained from two above mentioned studies urged our group to think about third 
study in 2010 (Faridi, etal., 2012), aimed at applying the GMDH-type NNs to data from two 
studies with broilers in order to predict carcass energy (CEn, MJ/g) content and relative 
growth (g/g of body weight) of carcass components (carcass protein, breast muscle, leg and 
thigh muscles, carcass fat, abdominal fat, skin fat and visceral fat). The effective input 
variables involved in the prediction of CEn and carcass fat content using data from the first 
study were dietary metabolizable energy (ME, kJ/kg), crude protein (CP, g/kg of diet), fat 
(g/kg of diet) and crude fibre (CF, g/kg of diet). For this purpose, in the current study, GA 
were deployed to design the whole architecture of the GMDH-type NN, i.e. the number of 
neurons in each hidden layer and their configuration of connectivity to find the optimal set 
of appropriate coefficients of quadratic expressions. 

Quantified values of bias in this study showed very little under- and over-estimation by the 
models proposed by the GMDH-type NN, which revealed close agreement between 
observed and predicted values of CEn and carcass components. The value of R2, a measure 
of the relation between the actual and predicted values, was high for both studies indicating 
a strong effect of all selected input variables on output prediction. 

In conclusion, the results of the current study showed that a GMDH type NN modeling 
approach can be a simple but very effective method for predicting carcass composition in 
broiler chickens based on dietary input variables. This is in agreement with previous studies 
aimed at investigating the effects of different dietary nutrients on body composition in 
broilers (Fraps 1943; Donaldson et al. 1956; Kubena et al. 1972; Edwards et al. 1973). 

Selection pressure applied by industry geneticists has greatly reduced feed conversion ratio 
and age to slaughter as well as increased growth rate and yield of edible meat for 
commercial turkeys. These genetic improvements have occurred along with improvements 
in nutrition and management (Havenstein et al., 2007).  

There has been extensive research conducted to clarify protein, essential amino acids, and 
energy requirements in poultry. To avoid conventional laboratory and field based 
techniques problems for determining nutrient requirements alternative methods was offered 
using GMDH – type NN (Mottaghitalab,etal., 2010). In determining nutrient requirements, 
the potential benefits from modeling growth in poultry are considerable. This approach has 
the potential to provide information in several areas for poultry production, including 
prediction of growth rate and market weights, determination of factors that are truly of 
economic importance to the operation, general knowledge about the systems involved in 
production, and determination of more precise nutrient requirements based on sex, strain, 
protein versus fat accretion, parts yield, and feed intake.  
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The structures of the 2 hidden layers GMDH-type NN evolved for CE and FE are shown in 
Figures 4 and 5, respectively. These figures correspond to the genome representation of 
(abceadaa) and (eeabacdd) for the CE and FE models, respectively, and illustrate the 
generated relationship between input variables to reach the output. As Figures 4 and 5 
show, the optimal structure of the evolved 2 hidden layer GMDH-type NN suggested by 
GA was found with 5 and 4 hidden neurons for CE and FE, respectively. In most GMDH-
type NN, the neurons in each layer are only connected to neurons in the adjacent layer 
(Farlow, 1984), but for GMDH-type NN developed here, variable a of the input layer for CE 
is connected to adaa in the second hidden layer by directly passing through the first hidden 
layer. The same process happens for d and e input variables in the FE model. Such repetition 
occurs whenever a neuron passes some adjacent hidden layer and connects to another 
neuron in the next following hidden layer. 

 
Fig. 4. Evolved structure of the generalized group method of data handling-type NNs for 
caloric efficiency in tom turkeys. The letters a, b, c, d, and e stand for input variables of age 
(wk), ME (kcal/g), CP (% of diet), Met (% of diet), and Lys (% of diet), respectively. This 
figure illustrates the generated relationship between input variables to reach output. 

It appears that all selected input variables in both models had a strong effect on output 
prediction, which is in agreement with previous studies (Lemme et al., 2006 for amino acid; 
Noy and Sklan, 2004 for energy and amino acid; Potter et al., 1966 and Waibel et al., 1995 for 
Met and Lys; and Bowyer and Waldroup, 1986 for protein). Figure 1 shows a very strong 
effect of age on CE. This result is similar to previous studies aiming to describe the growth 
pattern of animals with age using growth functions (Darmani-Kuhi et al., 2003; Schulin-
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Zeuthen et al., 2008). The calculated values of CE model error measurement showed that the 
testing set for toms yielded lower values of MS error, mean absolute deviation, mean 
absolute percentage error, mean relative error, and higher values of R2 compared with the 
training set. 

 
Fig. 5. Evolved structure of the generalized group method of data handling-type NNs for 
feed efficiency in tom turkeys. The letters a, b, c, d, and e stand for input variables of age 
(wk), ME (kcal/g), CP (% of diet), Met (% of diet), and Lys (% of diet), respectively. This 
figure illustrates the generated relationship between input variables to reach output. 

Conducting a sensitivity analysis (SA) on the obtained polynomial equations reveals the 
sensitivity of model output to input variables. Hence it is necessary to do sensitivity analysis 
for any proposed model. In other words, SA increases confidence in the model and its 
predictions by providing an understanding of how the model responds to changes in its 
inputs. Moreover, the SA identifies critical regions in the space of the inputs, establishes 
priorities for research and simplifies the model (Castillo et al.,2008; Saltelli et al., 2008). 

For such reason and in line with previous work, another study was designed, titled: 

"Sensitivity analysis of an early egg production predictive model inbroiler breeders based on dietary 
nutrient intake" (Faridi et al., 2011). 

Although the use of NN and SA techniques has led to successful application in a broad 
range of areas (Seyedan&Ching 2006;Lee &Hsiung 2009), the use of SA along with NN 
models is appeared uncommon in poultry science. The aim of the present study was to use 
the GMDH-type NN to model early egg production (EEP) in broiler breeders (BB) based on 
the dietary intake levels of ME, CP, and the two first limiting amino acids, methionine (Met) 
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and lysine (Lys). The SA method was utilized to evaluate the relative importance of input 
variables on model output and to determine the optimum levels of nutrient intake for 
obtaining the maximum EEP in BB. 

In this study, the GMDH-type NN with GA method was used to develop the EEP in BB. By 
means of the GMDH algorithm, a model can be represented as a set of quadratic 
polynomials. In this way, GA are deployed to assign the number of neurons (polynomial 
equations) in the network and to find the optimal set of appropriate coefficients of the 
quadratic expressions. 

The variables of interest in this model were the dietary intake levels of ME (MJ/bird/day), 
CP (g/bird/day), Met (g/bird/day), Lys (g/bird/day) and weekly egg production 
(eggs/bird) during early production (from 24 to 29 weeks of age). Datasets were imported 
into the software GEvoM for GMDH-type NN training (GEvoM 2009). 

Results of the developed GMHD-type NN models revealed close agreement between 
observed and predicted values of EEP. Results showed that the evolved GMDH-type NNs 
have been successful in obtaining a model for the prediction of EEP in BB. All input 
variables were accepted by the model, i.e. the GMDH-type NN provides an automated 
selection of essential input variables and builds polynomial equations to model EEP.  

The advantage of using GMDH-type NN is that which polynomial equations obtained can 
be used to analyze the sensitivity of output with respect to input variables. SA discusses 
how and how much changes in the input variables modify the optimal objective function 
value and the point where the optimum is attained. The simple approach to SA is easy to do, 
easy to understand, easy to communicate, and applicable with any model. 

6. Conclusion  

The conclusion was that, genetic algorithm in general and GMDH-type NN in particular 
may be used as a powerful tool to enhance our ability to predict economic traits, make 
precise prediction of nutrition requirements, and achieve optimal performance in poultry 
nutrition and production. 
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1. Introduction  

The field of Evolutionary Computation (EC) has been inspired by ideas from the classical 
theory of biological evolution, with, in particular, the components of a population from 
which reproductive parents are chosen, a reproductive protocol, a method for altering the 
genetic information of offspring, and a means for testing the fitness of offspring in order to 
include them in the population. In turn, impressive progress in EC – understanding the 
reasons for efficiencies in evolutionary searches - has begun to influence scientific work in 
the field of molecular evolution and in the modeling of biological evolution (Stemmer, 
1994a,b; van Nimwegen et al. 1997; 1999; Crutchfield & van Nimwegen, 2001). In this 
chapter, we will discuss how developments in EC, particularly in the area of crossover 
operators for Genetic Algorithms (GA), provide new understanding of evolutionary search 
efficiencies, and the impacts this can have for biological molecular evolution, including 
directed evolution in the test tube. 

GA approaches have five particular elements: encoding (the ‘chromosome’); a population; a 
method for selecting parents and making a child chromosome from the parents’ 
chromosomes; a method for altering the child’s chromosomes (mutation and 
crossover/recombination); criteria for fitness; and rules, based on fitness, by which offspring 
are included into the population (and parents retained). We will discuss our work and 
others’ on each of these aspects, but our focus is on the substantial efficiencies that can be 
found in the alteration of the child chromosome step. For this, we take inspiration from real 
biological reproduction mechanisms.  

1.1 Biological evolution by random point mutations? 

Traditional GA, using random point mutations, indicates that such a mechanism would be 
too slow to account for the observed speed of biological evolution (e.g. Shapiro, 2010). This 
suggests that other more complicated mutational mechanisms are acting (Shapiro, 1999, 
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2002; 2010). A number of projects are indicating, indeed, that the design of biological 
molecular machines, such as gene regulatory circuits, may be unreachable by an 
evolutionary search from scratch (von Dassow et al., 2000; Kitano, 2004; Shapiro, 2010). A 
likely solution is that evolution creates complicated molecular machines by operating on 
previously-evolved simpler domains (motifs, modules) (e.g. Botstein, 1980). 

1.2 Building blocks in protein and nucleic acid molecules 

In parallel with the computational literature, we use the term ‘building blocks’ (BBs) for 
these simpler domains. Biologically, BBs are found in proteins, in which amino acids 
combine to create functionally and physically distinct regions within the protein (e.g. Voigt 
et al., 2002); they are found in the semi-autonomous domains of RNA (Ancel-Myers  
& Fontana, 2005); and they are found in DNA, from nucleosomal and chromatin 
organization to the organization of gene regulatory regions (Fig. 1). Comparative studies 
show that BBs are maintained during evolution, and can be shared by quite diverse 
organisms (Voigt et al., 2002).  

The striking conservation of BBs in biological evolution has been noted in GA. It is 
beginning to be understood how important conservation of BBs is for efficient evolutionary 
searches in GA (and other fields of EC) (Forrest & Mitchell, 1993a,b; Goldberg, 1989; 
Holland, 1975; Mitchell et al., 1992). This chapter will discuss recent developments of GA 
chromosome alteration rules which conserve BBs, and how these relate to developments in 
directed evolution in the laboratory.  

1.3 Nontrivial mutagenesis for molecular evolution in the test tube 

As well as increased understanding of the role of BBs in biology and in search mechanisms, 
there is a growing appreciation for the use of BBs in in vitro, directed evolution experiments. 
Numerous groups are using evolutionary principles to design and select macromolecules, 
and it is becoming apparent that random point mutations are not the most efficient means 
for doing this. The role of crossover in conserving BBs in GA has inspired new techniques in 
molecular evolution in the test tube (Stemmer, 1994a,b). Methods are now being used to 
recombine from specific crossover sites to maintain BBs (Fig. 2) and speed the generation of 
diverse usable progeny molecules.  

DNA shuffling (or ‘sexual PCR’) and in vitro evolution are well advanced fields now, and 
have been successfully used to design many new biotechnologically valuable enzymes (Sen 
et al., 2007). Beyond the synthesis of macromolecules, a growing area in systems biology is 
to investigate the evolution of genes and gene networks, through computation and synthetic 
biology laboratory work.  

1.4 Biological evolution requires complicated mutational mechanisms? 

The role of complex methods of mutation vs. simple point mutation is currently an active area 
of discussion (e.g. Long et al., 2003). In particular, agents such as retroviruses (e.g. HIV) and 
retroposons are believed to work as highly effective and highly specific mutators (e.g. Brosius, 
1999). The crossover mechanism evolved by retroviruses (Fig. 3) shares many similarities with 
the DNA shuffling/sexual PCR techniques used in in vitro evolution (Fig. 2).  
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A)…ACGTAATCCCcatagaaaaccggtggaaaattcgcagctcgcTGCTAAGCTggccatcCGCTAAGCT
cccgGATCATCCAaatccaagtgcgcataattttttgtttctgCTCTAATCCAgaatggatcaagagcgcaatcctcaatcc

gcgatccgtgatcctcgattcccgaccgatccgcgacctgtacctgacttcccgtcacctctgcccaTCTAATCCC… 

B)  

C)  

Fig. 1. Some examples of “building blocks” (BBs) in biological macromolecules engaged in 
keeping and transferring genetic information – polypeptides and nucleic acids. A) The core 
of the anterior regulatory region of the Drosophila (fruit fly) gene hunchback, with a cluster of 
six BBs highly specific for recognition of the Bicoid protein. B) Organization of the bacterial 
promoter rrnP1 (ribosomal RNA operon promoter) into a series of highly conserved blocks, 
with between-block spacers of conserved length. C) Illustration of BB disruption in proteins. 
Black lines represent peptide bonds, red dotted lines represent interactions between amino 
acid (aa) side chains. Two hybrid proteins are shown. If the first 12 residues (aa’s) are from 
one parent, and the last four residues are from the other parent, three side chain interactions 
can be disrupted. If the last eight residues come from the same parent, then there is no 
disruption. Hybridizations that maintained interactions would be most likely to fold 
properly. (After Voigt et al., 2002) 
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Fig. 2. Schematic of experimental mutation of DNA for in vitro evolution. Input strands can 
only be cut at specific sites; progeny are created by combining these fragments. BBs are 
maintained within the fragments, but novel combinations are created in the process. 
Keeping the BB sequences minimizes structural disruption in the products.  
 

 
Fig. 3. The overall idea of recombination between two parental RNA strings used by 
retroviruses. The child sequence is read alternately from the parent strings, jumping 
between the parent templates at regions of homology (marked by gray rectangles). This is an 
effective mechanism for genetic diversity in the child, while retaining BBs. 

Retroviral recombination usually takes two parent RNA strands to create a child DNA 
strand (Negroni & Buc, 2001; An & Telesnitsky, 2002; though a three strand mechanism is 
also a possibility). Development of GA crossover operators that use the retroviral scheme, or 
extend it to the multiple parent case seen in sexual PCR, can give quantitative 
understanding of the efficiencies of these techniques, and can provide insight into the 
biological evolution of retroviruses and retroposons. 
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1.5 Test tube evolution needs new theoretical considerations 

Some in vitro evolution groups are using DNA ‘soft computing’ on well-defined benchmark 
computing problems (Chen & Wood, 2000; Henkel et al., 2007). However, theoretical 
(mathematical) studies of these computations are still at an initial stage (Crutchfield, 2002; 
Sun, 1999; Maheshri & Schaffer, 2003). A central question is whether theory can offer new 
approaches to speed up the evolutionary search for macromolecules with desired 
characteristics or features. This chapter will survey prospective ways to apply new 
developments in GA crossover operations in order to further the theory and efficiency of in 
vitro evolution. 

We have long been interested in the design of genes with multiple autonomous regulatory 
elements – these are critical in formation of the early body plan (in particular, we study 
these genes in the fruit fly, Drosophila). We have found that evolutionary searches for such 
highly structured sequences are very similar to the well-defined Royal Road (RR) and Royal 
Staircase (RS) computational test functions. By developing GA crossover operators that 
perform well on RR and RS functions, we are developing computational techniques for 
solving real design problems for biological and synthetic macromolecules. In particular, we 
are introducing GA crossover operators that work like retroviral or sexual PCR 
recombination, and which have the ability to preserve BB architecture. We name our 
approach Retroviral GA, or retroGA.  

This chapter will first (section 2) introduce the RR and RS test functions, and introduce the 
retroGA technique. Section 3 will show the performance of this approach on the test 
functions, and on biological gene-structure problems, from bacteria and fruit flies (each with 
particular challenges as a search problem). retroGA results will be compared with standard 
GA (point mutation). In section 4 we will discuss the prospects for extending the analytical 
approach developed by van Nimwegen and co-workers for RR and RS functions to real 
biological genetic problems, such as the bacteria and fruit fly examples in section 3. We will 
conclude on the use of the retroGA approach in understanding real biological evolution 
problems and for aiding the efficiency of directed (forced) molecular evolution in the 
laboratory. 

2. Our approach 

We will first discuss the RR and RS benchmark functions, which allow for standardized 
testing and analysis of BB type evolutionary problems. We will then present our retroGA 
approach, using retroviral recombination methods (crossover) to preserve BBs during 
evolutionary searches. 

2.1 GA benchmark functions as models of molecular biological evolution 

Among the many benchmark tests in EC, the RR and RS fitness functions were specifically 
invented to study the preservation and destruction of BBs by crossover operators. As such, 
they can serve as models for many cases of natural and test tube evolution, in which 
searches proceed with BB preservation. Four RR functions, of increasing complexity, were 
invented and introduced by Forrest, Mitchell, and Holland to specifically test crossover 
operations in GA (Forrest & Mitchell, 1993a,b; Mitchell et al., 1992). The related RS functions 
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were devised and introduced by van Nimwegen & Crutchfield (2000; 2001). These well-
defined functions allow for analytical (mathematical) study of the evolutionary search 
behaviour and parameter dependence.  

2.1.1 Royal road functions 

Royal Road functions were devised to award fitness for the preservation of BBs, and thus to 
serve as models for natural evolution (van Nimwegen & Crutchfield, 2000). R1, the simplest 
function, calculates bit string fitness by the number of order-8 schema, or words, in the 
string. Order does not matter: 
s1 = 11111111********************************************************; c1 =  8 
s2 = ********11111111************************************************; c2 =  8 
…………………………………………………………………………………………………………………………………………………………………………………………………………… 
s7 = ************************************************11111111********; c7 =  8 
s8 = ********************************************************11111111; c8 =  8 
sopt= 1111111111111111111111111111111111111111111111111111111111111111; copt = 64 

where the * is a random bit (0 or 1). The fitness value R1 (for string x) is the sum of the 
coefficients cs corresponding to each given schema of which x is an instance (cs is equal to 
order). The fitness of an intermediate step (such as the combination of s1 and s8) is a linear 
combination of the fitness of the lower level components (e.g. the combination of s1 and s8 
has fitness 16). The genotype space consists of all bit-strings of length 64 and contains 9 
neutral subbasins of fitness 0, 8, 16, 24, 32, 40, 48, 56 and 64. There is only one sequence with 
fitness 64, 255 strings with fitness 56, 65534 strings with fitness 48, etc. Because fitness 
proceeds by the build up of words, the fitness landscape for RRs has a subbasin-portal 
architecture (Fig. 4), in which evolution tends to drift in neutral subbasins, with rare jumps 
to the next level via portals (creation or destruction of a word).  

In searching for fitness functions that are easy for GA and difficult for non-evolutionary 
methods, a whole family of increasingly complex RR functions was devised (R1, R2, R3, R4; 
Mitchell, 1996). These showed that standard GA is superior to non-evolutionary techniques 
on harder problems, but also brought to light that standard GA has substantial weaknesses 
in the crossover operator. Due to their formal simplicity, theoretical analysis can be carried 
out on the RR functions to understand the parameters which promote efficiencies.  

R2 is very similar to R1, but allows for higher fitness at certain intermediate steps. R3 allows 
for random-bit spacers of set length between BBs (which are not calculated in the fitness 
score). The optimal string for R3 is: 

sopt=11111111********11111111********11111111*******11111111********11111111********11111111********11111111********11111111. 

The most difficult RR function is R4, since one, two, or even four non-neighboring elementary 
(in our case 8-bit) BBs in the string gives the same exact score (Level 1). The score will only 
increase if words neighbour, e.g. a pair of juxtaposed 8-bit BBs creates a Level 2 16-bit BB. A 
Level 3 BB consists of 4 neighboring 8-bit BBs (32 bits in total). Level 4 BBs are 64-bit, 
composed of eight 8-bit elementary BBs. Level 5 BBs would consist of 16 8-bit BBs. Most 
current optimization techniques cannot effectively deal with the R4 fitness function. 

From the viewpoint of molecular biology, R1 and especially R3 are reminiscent of a key 
element of the regulatory region of a gene: a cluster of binding sites (BS’s), made of short 
BBs separated by spacer sequences. While the analogy is good, there are several differences 
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to bear in mind. First, usually the positions and order of BS’s in such clusters are less 
restricted (than in the comparable RR), but this depends on the particular gene in question 
(enhanceosomes vs. “billboards”; see Jeziorska et al., 2009). Second, any BS is not a unique 
sequence: it is usually a family of related sequences with varying strength (fitness), usually 
with a conserved core sequence (Stormo, 2000). Finally, proximity of BSs to each other is 
important for the action of activators and repressors. This is analogous to R4 (e.g. with sub-
clustering represented by R4, Level 3), but the biological spacing is somewhat less restricted 
than in R4. Because of the general parallels between RR and biological structure, we expect 
RR analysis to shed some light on the evolution of gene regulatory regions, and to be useful 
as a theory for forced molecular evolution of bacterial and yeast gene promoters. (Where 
modified or completely artificial promoters can become new molecular tools for bio-sensing, 
etc.: Haseltine & Arnold, 2007; Lu et al., 2009.) 

 
Fig. 4. Subbasin-portal architecture for the R1 function. 

2.1.2 Royal staircase functions  

These are a generalization of the RR functions in which the subbasin-portal architecture is 
expressed in a more explicit form (van Nimwegen & Crutchfield, 2000). The RS function we 
use in this chapter is similar to the 8-bit word, 64-bit string R1 and R2 of the previous 
section, but order matters (i.e. the string is built up from one end), and fitness for N=8, K=8 
RS ranges from 0 to 80: 
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s1 = 11111111********************************************************; c1 = 10  
s2 = 1111111111111111************************************************; c2 = 20  
…………………………………………………………………………………………………………………………………………………………………………………………………………… 
s6 = 111111111111111111111111111111111111111111111111****************; c6 = 60  
s7 = 11111111111111111111111111111111111111111111111111111111********; c7 = 70  
sopt= 1111111111111111111111111111111111111111111111111111111111111111; copt = 80 

This version of RS was used by van Nimwegen and Crutchfield, and we use it in this 
chapter to be able to compare our results to theirs.  

2.1.3 Evolution of gene regulatory regions 

Here we develop two prototypical cases in the evolution of gene regulatory regions, 
highlighting their similarities to the RR and RS test functions. We will present retroGA 
results on these problems in section 3. 

2.1.3.1 Directed (forced) evolution of prokaryotic promoters 

Bacterial gene promoters, being simpler than eukaryotic promoters, present good cases for 
investigating the details of the evolutionary searches producing their structure. For a target 
sequence (solution) for these sorts of problems, we have selected the sequence of the 
ribosomal RNA (rRNA) operon promoter rrnP1 in E. coli, since it is very well studied and 
well characterized (Schneider et al., 2003). Core promoters in E. coli are approximately 60 
base pairs (bp) long and are characterized by several conserved sites with spacers in 
between. It is believed that while the sequences of these spacers are not significant, their 
lengths are of extreme importance (Schneider et al., 2003). There are at least four well-
conserved features in a bacterial promoter: the starting point (usually ‘CAT’); the -10 
sequence (‘TATAAT’ consensus); the -35 sequence (‘TTGACA’ consensus); and the distance 
between the -10 and -35 sequences. The rrnP1 promoter sequence contains an AT-rich 
sequence called the upstream (UP) element (Ross et al., 1998) upstream of the -35 element. UP 
elements increase transcription 20-to 50-fold (Hirvonen et al., 2001). Its consensus is AAA a/t 
a/t T a/t TTTT**AAAA, where * indicates a random base, a/t means A or T. In addition, three 
to five BS’s for the Fis protein (FisBS) increase transcription three- to eight-fold (Ross et al., 
1990). The weight matrix for the binding sites of this transcription factor has been defined 
(Hengen et al., 1997). The desired sequence for the rrnP1 promoter therefore includes: 
[FisBS]**<~5 bp>**[FisBS]**<~5 bp>**[FisBS]**<~15 bp>**AAA a/t a/t T a/t TTTT**AAAA**<~4 bp>**TTGACA**<16-19 bp>**TATAAT**<5-9 bp>**CAT. 

Evolution of the rrnP1 promoter can be viewed as a Royal Staircase fitness function. Starting 
with the core promoter (s1), evolution could add the powerful UP element (s2) and then 
sequentially add FisBSs (s3, s4): 
s1=**********************************…*************************************************TTGACA***...***TATAAT***...***CAT, c1 = Δ 
s2=****************…******************************AAA a/t a/t T a/t TTTT**AAAA***...***TTGACA***...***TATAAT***...***CAT, c2 = ~35 Δ 
s3=*************…******************[FisBS]*** …***AAA a/t a/t T a/t TTTT**AAAA***...***TTGACA***...***TATAAT***...***CAT, c3 = ~100 Δ 
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… 
sopt=***[FisBS]***…***[FisBS]***…***[FisBS]*** …***AAA a/t a/t T a/t TTTT**AAAA***...***TTGACA***...***TATAAT***...***CAT, copt = ~150Δ 

where Δ is an arbitrary small fitness value. 

Like RS, rrnP1 probably evolved by sequential finding and adding of BBs, with each 
addition raising the fitness of the promoter sequence (transcriptional efficiency). As with RS, 
the length and positions of the BBs are conserved during evolution, though not as strictly as 
the RS function in section 2.1.2.  
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The simplified rrnP1 test 

A major difference between RR and RS functions and functional clusters of BBs in biological 
macromolecules is the redundant character of the blocks. Functionally very similar blocks 
can have different sequences, sharing only a common core sequence. I.e. BBs usually are not 
unique, but are a family of related sequences. Also, compared to RR and RS, biological 
clusters of BBs include longer spacers (of variable length), and they are usually longer than 
64 or 128 elements. Finally, they are not binary, but quaternary (DNA and RNA) (or even 
consisting of 20 letters, in the case of proteins). 

To begin studying the rrnP1 problem (and do so within the RR, RS framework), we can 
simplify some of these complications: we ignore the redundant character of its 8 BBs and the 
variability of spacer lengths (see Fig. 1A,B); we assume that all the elements are fixed 
and/or unique in sequence; and we consider five elements only. The first of these represents 
the whole core promoter and is modelled by only 6 letters. The second element is the 
proximal half of the UP element, assumed to have a length of 5 letters. The spacer between 
the 1st and the 2nd elements is 24 letters. The 3rd to 5th elements are given the same length, 
with spacers of 15-letter length. We will present results on computing this simplified target 
in section 3. 

2.1.3.2 Genes with multiple regulatory units 

In eukaryotic organisms (i.e. non-bacterial), the organization of gene regulatory regions is 
far more complex. Genes are regulated from cis-regulatory modules (CRMs), which have 
clusters of BS’s for activators and inhibitors, with very important spacer lengths between 
them to allow for quenching (inhibition) and cooperativity (activation). CRM’s can be an 
arbitrary distance from the gene coding region. Compared to a prokaryotic model, like that 
for rrnP1, a eukaryotic CRM model must account for evolution of the BS locations and 
strengths, and be tested, fitness-wise, against a global production capacity. If the BS’s are 
words in the language of gene regulation, CRM’s order those words into sentences. Where 
rrnP1 could be treated as analogous to an RS problem with spacers, a eukaryotic CRM is 
more analogous to an R4 function, to account for clustering, with the level of the R4 
representing the number of BS’s in a functional cluster. Since the number of BS’s is 
frequently 2 or 3, this begins to present major computational challenges, since most 
algorithms are insufficient at R4 Level 2 or 3. If we now begin to consider genes with 
multiple CRM’s, which is common, we must consider at least R4 Level 4, a point at which 
most algorithms tend to fail. In analogy to language, organization of multiple CRM’s is at 
the level of the paragraph directing a gene’s regulation. Such problems may need to be more 
realistically thought of as higher level RS functions.  

Evolution of multiple CRM’s in Drosophila 

The genes responsible for early body segmentation in the fruit fly, Drosophila, form a highly 
studied network of interacting regulations. These genes code for proteins which 
transcriptionally regulate the other segmentation genes, and their spatial expression 
patterns determine where different body parts will form. The regulatory regions for 
segmentation genes involve multiple CRM’s, each of which can control different aspects of 
the spatial gene expression. It is believed the complex modern regulatory regions evolved 
by addition of CRM’s to a simpler primitive antecedent. We are running computations on 
the evolution of a number of the segmentation genes.  
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One example is evolution of the regulatory region of the hunchback (hb) gene, which forms 
an anterior-high ‘step function’ pattern which differentiates the head from the tail end in the 
embryo. Fig. 5 shows the organization of the 3 hb CRM’s, and the spatial expression that 
each is primarily responsible for. hb expression is controlled by at least 5 transcriptional 
regulators (protein products of other segmentation genes): Bicoid, Caudal, Tailless, 
Huckebein, Hunchback, Giant, Kruppel & Knirps. Available information on the 
organization of the hb regulatory regions is collected in the HOX pro (Spirov et al., 2000; 
2002) database (http://www.iephb.nw.ru/hoxpro/hb-CRMs.html). 
 

 
Fig. 5. One of the best studied examples of a gene from the Drosophila segmentation gene 
network – the hunchback (hb) gene. Bottom: the schematic organization of the hb regulatory 
region, with three separate autonomous regulatory elements (CRMs). Each regulatory 
element is a cluster of binding sites for, at least, five transcription factors (Bicoid, Caudal, 
Tailless, Hunchback, Huckebein, Giant, Kruppel & Knirps), shown as colored bars. Spacers 
(insulators) are also shown. Middle: mature expression pattern for the hb gene in an early 
fruit fly embryo (one-dimensional spatial expression profile, along the main head-to-tail 
embryo axis). Top: representation of the gene regulatory structure, each responsible for a 
different aspect of the hb expression pattern.  

We can study the building up of the modern hb regulatory region through computational 
evolution from a single CRM ancestor. Starting from a single CRM with fitness score = Δ, 
the evolutionary search finding the 2nd CRM would double the score (2Δ); and so on 
sequentially to completion (score=3Δ; Fig. 6). 

Coding the hb problem for computation highlights the levels of abstraction necessary to 
represent multiple CRMs:  
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DNA   
***TTAATCCGTT***…***CGAGATTATTAGTCAATTGC***…***GGATTAGC***…***GAAAGTCATAAAAACACATAATA***… 
BS for  Bicoid&Kruppel     Bicoid&Giant           Bicoid       Hunchback&Giant 
 

Symbolically, CRM level (B for Bicoid, K for Kruppel, H for Hunchback, N for Knirps, G for Giant): 
 

***B K B G G B K B H G B K***…***N H H/N N H H N H K H H H*** 
     Element 1            Element 2 
 

Symbolically, in octal numbers: 
 

***0 1 0 4 4 0 1 0 2 4 0 1***…***3 2 2 3 3 2 2 3 2 1 2 2 2*** 
     Element 1           Element 2 
 

 
Fig. 6. A simplified scenario for the evolutionary origin of hunchback gene organization. A 
single element would insert into an ancestral gene with no elements, and, due to increased 
fitness, build up to the gene with three elements. Gene organization and the corresponding 
patterns of gene expression are shown schematically. 
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The BS’s are finally coded as decimal pairs, where the 1st digit identifies the transcriptional 
factor and the 2nd digit represents its binding strength. To capture activator cooperativity 
and inhibitor quenching, neighbouring BS’s can be allowed to alter binding strengths. GA 
and retroGA algorithms can perform crossover operations on these strings to evolve them. 
In contrast to the rrnP1 problem, where fitness is rated by transcriptional efficiency of the 
gene, fitness of the hb regulatory string depends on how well it produces the required 
spatial expression pattern. The strings are formal representations of real functional 
connections between genes in a network. Candidate strings must be solved in a reaction-
diffusion model for spatial patterning, and the resulting pattern scored for fitness against 
experimental data (e.g. profile in Fig. 5).  

2.2 The retroGA technique 

As discussed in the Introduction, standard GA techniques, specifically through the use of 
point mutations to generate diversity in the chromosome, can destroy BB’s which are 
important for fitness, slowing evolutionary searches. We have taken inspiration from the 
mechanisms of retroviral recombination to create crossover operators which preserve BB’s. 
Our innovations are only in the crossover operators, all other actions of the algorithm are as 
in classical GA.  

As discussed above, homology-based PCR techniques (DNA shuffling, sexual PCR) used in 
test tube evolution may be naturally interpreted as a generalization of retroviral 
recombination processes (Fig. 3), using n instead of 2 parent strings. Our retroGA operator 
generates a child string from a given "parent set", combining the function of reproduction 
and crossover. Crossover points are determined by regions of homology in the parent 
strings. The parent strings are selected from the population, as in standard GA, by one of 
several predetermined strategies, such as truncation, roulette-wheel, etc. One string is selected 
as a donor, the others as acceptors (Fig. 7).  

In our reproduction and crossover procedure, a first pair of parent candidates is selected. 
These are the donor and acceptor-1 (Fig. 7). Their sequences are then compared going from 
left to right for a short distance Lacc (where Lacc < L, L is the length of the whole sequence). If 
the required zone of local homology is not found, another candidate for acceptor-1 is 
selected. The number of attempts to find a suitable acceptor is at most Nacc. If, and only if, a 
zone of complete homology of a size no less than Lhom symbols (Lhom < L) is found during an 
attempt to scan two sequences, do these two sequences become the donor and acceptor-1 
pair. Replica generation is then initiated, and takes place in the first n symbols of the donor, 
from the first element to the last element of the region homologous between the two parents. 
Replication then jumps to acceptor-1, and acceptor-2 candidates are selected. A search for 
local homology takes place between acceptor-1 and the putative acceptor-2. If no such 
region is found, the next candidate is searched. This process is iteratively repeated until the 
replica (child) is completed, or until the Nacc limit is exceeded. 

retroGA with point mutations: As discussed in the Introduction, crossover of BB’s is more 
efficient than point mutation. In real retroviral recombination, however, it appears that both 
processes are present. Template switching between parent RNA strings tends to introduce 
mutations in the child sequence. For our retroGA, we include this effect by introducing one 
point mutation in one of a few starting sites in the portion of the child string being copied 
from the new acceptor. This addition provided speed-up for retroGA on RS, rrnP1-gene and 
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hb-gene searches, but not on RR searches. Further analysis is needed to understand this 
difference. 

  
Fig. 7. Principle of the retroGA operator, an analogy to in vitro DNA shuffling techniques. 
The process of creating the child sequence by the operator starts with the donor-parent. 
Replication of the child from the donor-parent occurs if there is at least one region of 
homology (identity) between the donor and acceptor -1 (marked by gray rectangles). The 
process then jumps onto the acceptor-1 string. An acceptor-2 is found with a region of 
homology to acceptor-1, and the process repeats, copying from acceptor -1 and jumping to 
acceptor-2 (which becomes the third parent of the child sequence). The process of jumping 
from acceptor to acceptor continues until the creation of the child sequence is complete. 

3. Results 

In this section we present results on the efficiency of retroGA in comparison with standard 
GA (point mutations only). We do the comparison on RR and RS benchmark tests, as well as 
on the biological rrnP1 and hb gene sequence problems. Because all of these problems share 
a subbasin-portal type architecture, such computations allow us to begin to characterize the 
degree to which RR and RS test functions can predict behavior in gene searches. This is 
especially relevant if we can begin to use the analytical (mathematical) tools that have been 
developed for the RR and RS test functions to understand the gene search dynamics. 

3.1 Crossover operators for RS problems 

As a baseline, we have corroborated the RS results of van Nimwegen & Crutchfield (2000; 
2001) with point mutation GA. Following their analytical and computational work provides 
a framework from which to understand the efficacy of our retroGA technique (including for 
the RS-like rrnP1 problem). In particular, they derived the dependence of the number of 
evaluations E to achieve the global optimum on the frequency of point mutations q and size 
of population M (point mutations only and roulette-wheel selection strategy). They found 
theory and computational experiments to be in good agreement. 
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We have reproduced their computational experiments and analyzed how average time to 
achieve a given fitness n empirically depends on n. The case of N = 4, K = 10 is shown in Fig. 8. 
The averaged time (in the average number of candidate string evaluations) to achieve the n+1 
fitness level rises exponentially (Fig. 8A); plotting in semi-log scale confirms this (Fig. 8B). 
 

        

       

             
Fig. 8. Average total number of fitness function evaluations to achieve nth fitness level for 
the Royal Staircase with N=4 blocks of length K=10, in comparison with the rrnP1 gene test. 
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Evolutionary search with point mutations only (A, B; Cf. van Nimwegen & Crutchfield 
(2000; 2001)) vs. search by retroGA algorithms (C,D). Each data point was obtained as an 
average over 200 GA runs. A, B) Corroboration of the van Nimwegen and Crutchfield tests 
with point mutation only (no crossover). Population size M=30,000; mutation rate q=0.01; 
roulette-wheel selection strategy. C,D) Our tests with the retroGA operator as the mutation 
procedure (see text for details). retroGA speeds the search by about 5.5 times compared to 
point mutations only. M=5,000; truncation selection strategy. E,F) retroGA results on the 
simplified rrnP1 test function, M=24,000. 

3.1.1 retroGA speeds up search on RS fitness functions 

Testing both versions of our retroGA operators – crossover without point mutations and 
crossover with associated point mutations (see section 2.2 ) clearly shows that the combined 
crossover/point mutation mechanism is the most effective procedure on RS tests, speeding 
up searches about five-fold. Fig. 8C,D shows the retroGA crossover/point mutation results 
for the same RS fitness function as in previous section (N=4, K=10). The RS optimum was 
achieved in 36,469±36,991 solution evaluations, about 5.5 times faster than by standard GA 
(point mutations only; ~200,000 evaluations). It can also be seen in Fig. 8C,D, that the 
retroGA search shows a nearly exponential dependence between search efficacy and the n 
level, like GA with mutations only (Fig. 8A,B).  

3.2 Crossover operators for the rrnP1 problem 

We found that the simplified version of the rrnP1 test behaved very closely to the RS tests 
with N=4, K=10. Though we had initially thought of rrnP1 in terms of RS organization 
(section 2.1.3.1), we were surprised at the closeness, because the rrnP1 test is specified by 
quaternary strings (the four DNA letters A, T, G, C) and the string length is about twice the 
RS test, owing to spacers. The dependence of the search efficacy on the n level is still 
exponential (Fig. 8E,F) for retroGA on rrnP1, as on RS. retroGA on the simplified rrnP1 
(with five blocks) was over five times faster than GA with one-point crossover (crossover 
rate = 0.01): 95,618±69,575 (Fig. 8E,F) vs. 512,040±48,378 average evaluations. Success on the 
rrnP1 problem, and the parallels to the well-characterized RS function, suggests that 
retroGA is an effective technique for prokaryotic gene search problems, and could 
contribute to real problems of forced (directed) evolution of bacterial promoters in the test 
tube. We will follow up these connections with modern synthetic biology in the Discussion. 

3.3 Crossover operators for R1 - R3 functions 

In this section we characterize retroGA performance on R1 to R3. These functions have been 
well-studied in the literature, and as discussed above, have some of the fundamental motifs 
necessary for modeling gene organization. Testing retroGA both with and without point 
mutations after crossover showed little effect (in contrast to RS). The results shown here are 
for retroGA crossover without accompanying mutation. 

We have already reported on the several-fold speed-up of retroGA vs. standard GA for RR 
problems (Spirov & Holloway, 2010). Here we will focus on the dependence of retroGA 
performance on key computational parameters. It is known that the R1 – R3 functions behave 
similarly in computational experiments (Forrest & Mitchell, 1993a,b; Mitchell et al., 1992; 
Mitchell, 1996). Therefore, we will focus on R1 tests, and present comparisons to R3 performance.  
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3.3.1 Dependence on population size 

Theoretical and computational studies have shown that many performance parameters of 
R1 depend on population size M (van Nimwegen et al., 1999). With an aim to applying 
retroGA to real directed molecular evolution problems (in vitro), it is important to 
characterize the population size dependence (and to connect the theoretical knowledge of 
R1 to real biological problems). We tested M dependence (Fig. 9) for a set of parameters 
found to be close to optimal in other tests (see next sub-sections).  

 

 

Fig. 9. Royal Road fitness functions 1 & 3: Empirical dependence of average total number of 
fitness function evaluations on population size M. Each data point was obtained as an 
average over 100 retroGA runs. Other parameters: limit of acceptor parents Nacc=100.  
A) The R1 tests. B) R1 vs. R3 results. 

While retroGA performance, as number of evaluations, is relatively consistent across 
population size (Fig. 9A, red), there is a relatively narrow window of M from ~2,400 to 2,700 
in which number of evaluations and the standard deviation on these are both low. In this 
range of M, retroGA is about 6 times faster than standard GA (~10,000 vs. ~60,000 
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evaluations). While M=<2,400 can achieve fast results, the standard deviation is higher and a 
lower percentage of runs achieve the global optimum (Fig. 9A, blue). For M>2700, the number 
of evaluations steadily rises with population size. We find that retroGA behaves very similarly 
on R3 as on R1 (Fig. 9B), as seen earlier with standard GA (Mitchell, 1996). The main 
conclusion here is that the retroviral crossover is most efficient just as the success rate 
approaches 100% - small populations are enough for efficient and reliable retroGA searches. 

3.3.2 Dependence on retroGA parameters 

retroGA algorithms have only three parameters: the maximum number of acceptors Nacc to use 
in synthesizing a child-string (see Fig. 7); the maximum acceptor length to search for local 
homology Lacc; and the maximum length of the local homology region Lhom (see section 2.2). 

Dependence on number of acceptors, Nacc: Even for such a simple problem as R1, a high number 
of acceptors helps greatly (Fig. 10A). Having only a few acceptors gives a very high number 
of evaluations; adding acceptors, up to about 40, drops the number of evaluations many-
fold. More parents provides a more effective evolutionary search. 

Dependence on maximum acceptor length to search for local homology Lacc, and on maximum length 
of local homology region Lhom: As explained in section 2.2, in this work we scan each acceptor 
for local homology for a certain distance from the jump point (see Fig. 7), using length from 
2 to Lacc to find a homologous sequence of length from 2 to Lhom. Fig. 10B shows results for 
the dependence of efficacy on Lacc for the R1 function. The algorithm shows a great increase 
in efficiency going from Lacc ~10% to 20% bit-string length: for the 64 bit test strings, Lacc 
should be over 13 bits. Tests with Lhom show a smoother increase in efficiency, and indicate 
that Lhom should be kept over ~40% bit-string length (Fig. 10C). 

3.3.3 Time to achieve fitness level n 

In addition to total number of evaluations, RR and RS functions have been evaluated in 
terms of epoch duration, the time a population stays at a given level n searching for the 
solution to the next level n+1. In developing a theory for the R1 problem, van Nimwegen 
and colleagues (1999), predicted that epoch duration depends exponentially on epoch 
number (fitness level) n. Computationally, we do see a roughly exponential dependence for 
standard GA (no crossover; Fig. 11C), though it is not strictly exponential (Fig. 11D, semi-log 
plot; this in contrast to RS, which shows strict exponentiality, Fig. 8). Interestingly, retroGA 
with a high level of acceptors shows a linear relationship between number of evaluations 
and n (Fig. 11A). The dependence becomes exponential again for low acceptor numbers (Fig. 
11B). The retroGA operator with many acceptors is far more efficient than standard GA (Fig. 
11D) in terms of keeping epoch duration low.  

3.3.4 Tests with ternary strings 

While the R3 fitness function has strong parallels to the typical clustering of binding sites in 
gene regulatory regions (Fig. 1A), a major difference is that DNA “strings” are quaternary 
(four-letter) ones. Here, we check how such dimensionality affects overall efficacy in GA 
tests. Specifically, we tested R1 with optimized parameter sets (c.f. Fig. 11A) with ternary 
strings. (Quaternary strings were too computationally intensive for GA for test purposes.) 
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Fig. 10. Tests with the retroGA parameters. Each data point was obtained as an average over 
200 retroGA runs. A) Tests on the number of acceptors to use, Nacc, for the R1 fitness function. 
B) Tests on the maximum acceptor length to search for local homology Lacc. C) Tests on the 
maximum length of local homology to find, Lhom. M=5,000 in all computations. 
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Fig. 12 shows the same linear relationship of epoch duration on n found in Fig. 11A for 
retroGA on binary strings, but the number of evaluations goes up dramatically, with the 
ternary problem taking ~20 times more evaluations on average than the binary problem 
(10,893 vs 228,419 – Fig. 11A vs. Fig. 12). There is a large price to pay for increasing the 
dimension of the problem; we would expect the quaternary problem to be many times 
slower again. 

 

 

 

Epoch level, n 
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Fig. 11. Epoch durations for the R1 problem: time to achieve fitness level n. Each data point 
was obtained as an average over 100 retroGA runs. A) retroGA - M=2600; Nacc=48; Lacc=32; 
Lhom=32. B) retroGA - M=2600; Nacc=4; Lacc=32; Lhom=32. C) Standard GA - M=2600; 
crossover rate = 0.1; mutation rate = 1/L . D) retroGA vs. standard GA: plots A (green) and 
C (blue) in semi-log coordinates. 

 

Fig. 12. Epoch duration for retroGA on the R1 problem with ternary strings. Cf. Fig. 11A. 
Each data point is an average over 100 retroGA runs. 

3.4 Crossover to design the hunchback gene model 

The hb gene problem as formulated in section 2.1.3.2 is like R3 in form (N=3; K=16; spacers 
of length 4), but with octal-digit strings and a substantial level of degeneracy in its three 
building blocks. The sequential search for CRM's also gives this problem an RS-like 
character. While the hb search has RR- and RS-like qualities, which should aid in analysis of 
the problem, the degeneracy of the building blocks is not captured by the test functions, but 
this does bring the problem closer to real life problems of forced evolution. 

We found retroGA (crossover and point mutations) to be an effective method for solving the 
hb gene problem. Specifically, retroGA was over 4-fold faster than standard GA 
(325,594±59,456 vs. 1,373,246±198,698; averaged over 100 runs).  
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The hb gene problem is the only one in this chapter which has redundant building block 
sequences. Results show that these blocks are highly redundant. Fig. 13 shows 100 good 
solutions for the hb regulatory sequence. Each row is a solution, with octal-digit represented 
on an 8-bit grey-scale. There is no discernible pattern outside of the spacer regions (black 
stripes), illustrating how high the redundancy is in such a problem (for solutions which 
match the data well). 

 

Fig. 13. Grey-scale representation of an aligned stack of 100 good solutions of the hb gene 
problem. Each row corresponds an octal-digit string. The two vertical black columns 
correspond to two spacer regions of four elements in length each. 

4. Discussion 

A major aim with this work is to bridge evolutionary computations from benchmark cases, 
such as Royal Road and Royal Staircase, which are well-understood theoretically (in terms 
of mathematical analysis), to biological cases, which can serve as a basis for more efficient 
directed molecular evolution in the test tube and for understanding the mechanisms of 
biological evolution at the level of gene regulatory sequences.  

4.1 Towards a theory of evolution of biological macromolecules 

Using analytical tools from statistical mechanics, dynamical systems theory, and 
mathematical population genetics, van Nimwegen and co-authors (van Nimwegen & 
Crutchfield, 2000; 2001; van Nimwegen et al., 1999; Crutchfield & Nimwegen, 2001) 
developed a detailed and quantitative description of the search dynamics for the RS and RR 
class of problems that exhibit epochal evolution. From this, the authors could analytically 
predict optimal parameter settings for this class of problems. More generally, the detailed 
understanding of the behaviour for this class of problems provides valuable insights into the 
emergent mechanisms that control the dynamics in more general settings of evolutionary 
searches and in other population-based dynamical systems. By establishing the RR and RS 
characteristics of gene regulatory problems, we can use this theoretical background to 
anchor our understanding of more realistic biological search cases.  
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4.1.1 Royal staircase theory 

For RS (point mutation only (no crossover) and roulette-wheel selection strategy), van 
Nimwegen & Crutchfield (2000) derived an analytical expression for the dependence of the 
number of evaluations E to achieve the global optimum on the frequency of point mutation 
q and population size M. Numerical tests (Fig. 14 upper, a) closely follow the analytically 
predicted dependence (Fig. 14 upper, b). With numerical tests, we found (Fig. 14, (c)) the 
retroGA operator to have a similar dependence of E on M and Q (Q is the point mutation 
rate for retroGA; also see Fig. 8). retroGA uses substantially larger populations (M>=2,500) 
but is several times faster than the standard GA studied by van Nimwegen and Crutchfield. 
This similar general character of the dependence is promising for extending the van 
Nimwegen–Crutchfield theory to the case of retroGA crossover. 

4.1.2 Royal road theory 

van Nimwegen and colleagues (1999) developed an analytical theory for the R1 problem 
(without crossover and with roulette-wheel selection) and deduced a series of expressions 
describing the behaviour of this evolutionary search at low mutation rate q. From these, 
they could predict that high mutation rate would be associated with lower average fitness; 
they also derived a basis for the exponential dependence of number of evaluations on fitness 
level. Such predictions are very intriguing for understanding searches and diversity in test 
tube directed evolution. However, our numerical results with the retroGA operator show a 
linear relationship of number of evaluations on fitness. This indicates that the analytical 
results, for the inefficient point mutation operator, may not be seen in biological situations 
which use more efficient BB-preserving (crossover) operators. Further work is needed to 
establish the applicability of the point mutation analysis to crossover mechanisms. 

4.2 Future prospects for applying the computational results to directed evolution of 
gene circuits 

Our aim is to use the techniques developed in this chapter to aid the directed evolution of 
bacterial and yeast gene promoters in the laboratory. Several approaches to improve and/or 
analyze such promoters via directed evolution have been undertaken by experimentalists 
(Schmidt-Dannert, 2001; Haseltine & Arnold, 2007; Collins et al., 2006). While there is still 
some gap between the gene models in this chapter and real macromolecular evolution, we 
hope to have outlined the directions that can be taken for the computational work to 
provide a stronger theoretical basis for directing and analysing experiments. 

We have focused on evolution of sequences, with biological applications in gene promoter 
structure. The growing field of synthetic biology also includes a great deal of work on 
designing gene circuits, where large numbers of genes affect each other’s expression (e.g. the 
Drosophila segmentation network). Haseltine & Arnold (2007) have identified three primary 
limitations in using directed evolution to design gene circuits: (a) the evolutionary search 
space for a genetic circuit composed of many genes is generally too large to explore 
efficiently; (b) detuning parameters (reducing function) is much easier than improving 
function; and (c) although selecting for independent properties is possible, it usually 
requires setting up multiple rounds of screening or selection. In this area, using  
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Fig. 14. Dependence of search efficacy E on population size M and mutation rate q. Upper 
figure: (a) experimentally obtained dependence of E on population size M, each data point is 
an average over 250 GA runs; (b) shows the theoretical predictions for E as a function of M 
(van Nimwegen & Crutchfield, 2000). In both, N=4 blocks of length K=10 (c.f. Fig. 8) for four 
different mutation rates: q ∈ {0.013, 0.015, 0.017, 0.019}. Lower figure (c): Tests with retroGA, 
showing the empirical dependence of E on M and parameter Q (the point mutation rate for 
retroGA). 
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mathematical models to suggest mutational targets can greatly speed up the process and 
help overcome each of these limitations. 

In the wider perspective, an appropriate theory of molecular evolution in the test tube, 
which includes effective mathematical analysis of new experimental recombination 
techniques, as described in this chapter, would give a new way to design gene circuits 
effectively. We hope that the theoretical and computational results discussed in this chapter 
can facilitate progress in this direction. 

5. Conclusion  

In this chapter, we have discussed some of the computational issues for evolutionary 
searches to find gene regulatory sequences. One of the challenges for such searches is to 
maintain building blocks (meaningful ‘words’) through genetic change operators. Mutation 
operators in standard GA frequently destroy such BB’s and slow searches. We have 
introduced the retroGA operator, inspired by retroviral recombination and in vitro DNA 
shuffling mechanisms, to copy blocks of genetic information. The Royal Road (RR) and 
Royal Staircase (RS) benchmark functions have been developed for analysing evolutionary 
searches which preserve BB’s. RR and RS theory provide a mathematical framework for 
understanding the dynamics of searches which have subbasin-portal fitness landscapes. 
Empirically, we see that retroGA searches share many of the characteristics of RR and RS, 
but that features, such as multiple parent strings, which can greatly speed up searches, also 
produce different optimization dynamics than RR and RS. We aim to bridge between RR 
and RS functions and real biological applications. Through working on specific cases, the 
rrnP1 and hb gene regulatory regions, we are altering simple, binary RR functions to take 
into account BS clustering and non-binary coding. While real biological problems have a yet 
higher degree of complexity, our aim is to sketch how EC computations can be used to aid 
experimental biological work. Computational theory can contribute to both understanding 
how real gene structures have evolved and to speeding up laboratory work on directed 
evolution of macromolecules in the test tube. 
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1. Introduction

Classical biotechnology is the science of production of human-useful processes and products
under controlled conditions, applying biological agents – microorganisms, plant or animal
cells, their exo- and endo- products, e.g. enzymes, etc. (Viesturs et al., 2004). The conventional
agriculture or chemistry cannot perform these processes as efficiently or at all. In fact,
conventional biotechnology has been the largest industrial activity on earth for a very long
time. Modern biotechnology goes much further with respect to control of the biological
processes.

Particularly microorganisms have received a lot of attention as a biotechnological instrument
and are used in so-called cultivation processes. Numerous useful bacteria, yeasts and fungi
are widely found in nature, but the optimum conditions for growth and product formation
in their natural environment is seldom discovered. In artificial (in vitro) conditions, the
biotechnologist can intervene in the microbial cell environment (in a fermenter or bioreactor),
as well as in their genetic material, in order to achieve a better control of cultivation processes.
Because of their extremely high synthetic versatility, ease of using renewable raw materials,
great speed of microbial reactions, quick growth and relatively easy to modify genetic
material, many microorganisms are extremely efficient and in many cases indispensable
workhorses in the various sectors of industrial biotechnology.

Cultivation of recombinant micro-organisms e.g. Escherichia coli, in many cases is the
only economical way to produce pharmaceutical biochemicals such as interleukins, insulin,
interferons, enzymes and growth factors. Simple bacteria like E. coli are manipulated to
produce these chemicals so that they are easily harvested in vast quantities for use in medicine.
E. coli is still the most important host organism for recombinant protein production. Scientists
may know more about E. coli than they do about any other species on earth. Research on
E. coli accelerated even more after 1997, when scientists published its entire genome. They
were able to survey all 4,288 of its genes, discovering how groups of them worked together
to break down food, make new copies of DNA and do other tasks. But despite decades of
research there is a lot more we need to know about E. coli. To find out more, E. coli experts
have been joining forces. In 2002, they formed the International E-coli Alliance to organize
projects that many laboratories could do together. As knowledge of E. coli grows, scientists
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are starting to build models of the microbe that capture some of its behavior. It is important to
be able to predict how fast the microbe will grow on various sources of food, as well as how
its growth changes if individual genes are knocked out. Here is the place of mathematical
modelling. Some of recent researches and developed models of E. coli are presented in
(Covert et al., 2008; Jiang et al., 2010; Karelina et al., 2011; Opalka et al., 2011; Petersen et al.,
2011; Skandamis & Nychas, 2000).

Modelling of biotechnological processes is a common tool in process technology.
Development of adequate models is an important step for process optimization and
high-quality control. In an ideal world, process modelling would be a trivial task. Models
would be constructed in a simple manner just to reproduce the true process behaviour. In
the real world it is obvious that the model is always a simplification of the reality. This is
especially true when trying to model natural systems containing living organisms. For many
industrial relevant processes however detailed models are not available due to insufficient
understanding of the underlying phenomena. The mathematical models, which naturally
could be incomplete and inaccurate to a certain degree, can still be very useful and effective
tools in describing those effects which are of great importance for control, optimization, or
for understanding of the process. At present the models can be applied in practice since
computers allow numerical solution of process models of such complexity that could hardly
be imagined a couple of decades ago. Thus numerical solution of the models is the fundament
for the development of economic and powerful methods in the fields of bioprocess design,
plant design, scale-up, optimization and bioprocess control (Schuegerl & Bellgardt, 2000).

The mathematical modelling of biotechnological processes is an extremely wide field that
covers all important kinds of processes with many different microorganisms or cells of plants
and animals. The mathematical model is a tool that allows to be investigated the static and
dynamic behaviour of the process without doing (or at least reducing) the number of practical
experiments. In practice, an experimental approach often has serious limitations that make it
necessary to work with mathematical models instead.

Modelling approaches are central in system biology and provide new ways towards the
analysis and understanding of cells and organisms. A common approach to model cellular
dynamics is the sets of nonlinear differential equations. Real parameter optimization of
cellular dynamics models has especially become a research field of great interest. Such
problems have widespread application.

The principle of mathematical optimization consists in choice of optimization criteria, choice
of control parameters and choice of exhaustive method. Parameter identification of a
nonlinear dynamic model is more difficult than the linear one, as no general analytic results
exist. The difficulties that may arise are such as convergence to local solutions if standard
local methods are used, over-determined models, badly scaled model function, etc. Due
to the nonlinearity and constrained nature of the considered systems, these problems are
very often multimodal. Thus, traditional gradient-based methods may fail to identify the
global solution. In this case only direct optimization strategies can be applied, because they
exclusively use information about values of the goal function. These optimization methods
provide more guarantees of converging to the global optimal solution. Although a lot of
different global optimization methods exist, the efficacy of an optimization method is always
problem-specific. A major deficiency in computational approaches to design and optimization
of bioprocess systems is the lack of applicable methods.
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There are many possible variants such as numerical methods (Lagarias et al., 1998; Press et al.,
1986). But while searching for new, more adequate modeling metaphors and concepts,
methods which draw their initial inspiration from nature have received the early attention.
During the last decade metaheuristic techniques have been applied in a variety of areas.
Heuristics can obtain suboptimal solution in ordinary situations and optimal solution in
particular. Since the considered problem has been known to be NP-complete, using heuristic
techniques can solve this problem more efficiently. Three most well-known heuristics are
the iterative improvement algorithms, the probabilistic optimization algorithms, and the
constructive heuristics. Evolutionary algorithms like Genetic Algorithms (GA) (Goldberg,
2006; Holland, 1992; Michalewicz, 1994) and Evolution Strategies, Ant Colony Optimization
(ACO) (Dorigo & Di Caro, 1999; Dorigo & Stutzle, 2004; Fidanova, 2002; Fidanova et al.,
2010), Particle Swarm Optimization (Umarani & Selvi, 2010), Tabu Search (Yusof & Stapa,
2010), Simulated Annealing (Kirkpatrick et al., 1983), estimation of distribution algorithms,
scatter search, path relinking, the greedy randomized adaptive search procedure, multi-start
and iterated local search, guided local search, and variable neighborhood search are
- among others - often listed as examples of classical metaheuristics (Bonabeau et al.,
1999; Syam & Al-Harkan, 2010; Tahouni et al., 2010), and they have individual historical
backgrounds and follow different paradigms and philosophies (Brownlee, 2011). In this work
the GA and ACO are chosen as the most common direct methods used for global optimization.

The GA is a model of machine learning deriving its behaviour from a metaphor of the
processes of evolution in nature. This is done by the creation within a machine of a
population of individuals represented by chromosomes. A chromosome could be an array
of real numbers, a binary string, a list of components in a database, all depending on the
specific problem. Each individual represents a possible solution, and a set of individuals
form a population. In a population, the fittest are selected for mating. The individuals
in the population go through a process of evolution which is, according to Darwin, made
up of the principles of mutation and selection; however, the modern biological evolution
theory distinguishes also crossover and isolation mechanisms improving the adaptiveness
of the living organisms to their environment. The principal advantages of GA are domain
independence, non-linearity and robustness. The only requirement for GA is the ability to
calculate the measure of performance which may be highly complicated and non-linear. The
above two characteristics of GA assume that GA is inherently robust. A GA has a number of
advantages. It can work with highly non-linear functions and can cope with a great diversity
of problems from different fields. It can quickly scan a vast solution set. Bad proposals do not
effect the end solution negatively as they are simply discarded. The inductive nature of the
GA means that it doesn’t have to know any rules of the problem - it works by its own internal
rules. This is very useful for complex or loosely defined problems. However, the conventional
GA has a very poor local performance because of the random search used. To achieve a good
solution, great computational cost is inevitable. The same qualities that make the GA so robust
also can make it more computationally intensive and slower than other methods.

On the other hand ACO is a rapidly growing field of a population-based metaheuristic
that can be used to find approximate solutions to difficult optimization problems. ACO is
applicable for a broad range of optimization problems, can be used in dynamic applications
(adapts to changes such as new distances, etc) and in some complex biological problems
(Fidanova & Lirkov, 2009; Fidanova, 2010; Shmygelska & Hoos, 2005). ACO can compete
with other global optimization techniques like genetic algorithms and simulated annealing.
ACO algorithms have been inspired by the real ants behavior. In nature, ants usually wander

263
Application of Genetic Algorithms and Ant Colony 
Optimization for Modelling of E. coli Cultivation Process



4 Will-be-set-by-IN-TECH

randomly, and upon finding food return to their nest while laying down pheromone trails.
If other ants find such a path, they are likely to not keep traveling at random, but to follow
the trail instead, returning and reinforcing it if they eventually find food. However, as time
passes, the pheromone starts to evaporate. The more time it takes for an ant to travel down the
path and back again, the more time the pheromone has to evaporate and the path becomes less
noticeable. A shorter path, in comparison will be visited by more ants and thus the pheromone
density remains high for a longer time. ACO is implemented as a team of intelligent agents
which simulate the ants behavior, walking around the graph representing the problem to solve
using mechanisms of cooperation and adaptation.

In this chapter GA and ACO are applied for parameter identification of a system of nonlinear
differential equations modeling the fed-batch cultivation process of the bacteria Escherichia
coli. A system of ordinary differential equations is proposed to model E. coli biomass
growth and substrate (glucose) utilization. Parameter optimization is performed using real
experimental data set from an E. coli MC4110 fed-batch cultivation process. The cultivation
is performed in Institute of Technical Chemistry, University of Hannover, Germany during the
collaboration work with the Institute of Biophysics and Biomedical Engineering, BAS, Bulgaria,
granted by DFG.

The experimental data set includes records for substrate feeding rate, concentration of biomass
and substrate (glucose) and cultivation time. In considered here nonlinear mathematical
model the parameters that should be estimated are maximum specific growth rate (μmax),
saturation constant (kS) and yield coefficient (YS/X).

The parameter estimation is performed based upon the use of Hausdorff metric (Rote,
1991), in place of the most commonly used metric – Least Squares regression. Hausdorff
metrics are used in geometric settings for measuring the distance between sets of points.
They have been used extensively in areas such as computer vision, pattern recognition and
computational chemistry (Chen & Lovell, 2010; Nutanong et al., 2010; Sugiyama et al., 2010;
Yedjour et al., 2011). A modified Hausdorff Distance is proposed to evaluate the mismatch
between experimental and model predicted data.

The results from both metaheuristics GA and ACO are compared using the modified
Hausdorff Distance. The algorithms accuracy (value of the objective function) and the
resulting average, best and worst model parameter estimations are compared for the model
identification of the E. coli MC4110 fed-batch cultivation process.

The chapter is organized as follows: In Section 2 the problem definition is formulated. As a
case study an fed-batch cultivation of bacteria E. coli is presented. Further optimization criteria
is defined. In Section 3 the theoretical background of the GA is presented. In Section 4 the
theoretical background of the ACO is presented. The numerical results and a discussion are
presented in Section 5. The GA and ACO adjustments for considered parameter identification
problem application are discussed too. Conclusion remarks are done in Section 6.

2. Problem definition

Cultivation process are known to be very complex and modeling may be a rather time
consuming. However, it is neither necessary nor desirable to construct comprehensive
mechanistic process models that can describe the system in all possible situations with a high
accuracy. In order to optimize a real biotechnical production process, the model must be
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regarded as a step to reach more easily the final aim. The model must describe those aspects
of the process that significantly affect the process performance.

The costs of developing mathematical models for bioprocesses improvement are often too
high and the benefits too low. The main reason for this is related to the intrinsic complexity
and non-linearity of biological systems. In general, mathematical descriptions of growth
kinetics assume hard simplifications. These models are often not accurate enough at
describing the underlying mechanisms. Another critical issue is related to the nature of
bioprocess models. Often the parameters involved are not identifiable. Additionally, from
the practical point of view, such identification would require data from specific experiments
which are themselves difficult to design and realize. The estimation of model parameters with
high parameter accuracy is essential for successful model development.

The important part of model building is the choice of a certain optimization procedure for
parameter estimation, so with a given set of experimental data to calibrate the model in order
to reproduce the experimental results in the best possible way.

Real parameter optimization of simulation models has especially become a research field of
great interests in recent years. Nevertheless, this task still represents a very difficult problem.
This mathematical problem, so-called inverse problem, is a big challenge for the traditional
optimization methods. In this case only direct optimization strategies can be applied, because
they exclusively use information about values of the goal function. Additional information
about the goal function like gradients, etc., which may be used to accelerate the optimization
process, is not available. Since an evolution of a goal for one string is provided by one
simulation run, proceeding of an optimization algorithm may require a lot of computational
time. Thus or therefore, various metaheuristics are used as an alternative to surmount the
parameter estimation difficulties.

2.1 E. coli fed-batch cultivation process

To maximize the volumetric productiveness of bacterial cultures it is important to grow E. coli
to high cell concentration. The use of fed-batch cultivation in the fermentation industry takes
advantage of the fact that residual substrate concentration may by maintained at a very low
level in such a system.

The general state space dynamical model described by Bastin and Dochain (Bastin & Dochain,
1991) is accepted as representing the dynamics of an n components and m reactions bioprocess:

dx
dt

= Kϕ(x, t)− Dx + F−Q (1)

where x is a vector representing the state components; K is the yield coefficient matrix; ϕ is
the growth rates vector; the vectors F and Q are the feed rates and the gaseous outflow rates.
The scalar D is the dilution rate, which will be the manipulated variable, defined as follows:

D =
Fin
V

(2)

where Fin is the influent flow rate and V is the bioreactor’s volume.

Application of the general state space dynamical model (Bastin & Dochain, 1991) to the E.
coli cultivation fed-batch process leads to the following nonlinear differential equation system
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(Roeva, 2008b):
dX
dt

= μmax
S

kS + S
X − Fin

V
X (3)

dS
dt

= − 1
YS/X

μmax
S

kS + S
X +

Fin

V
(Sin − S) (4)

dV
dt

= Fin (5)

where:

X – biomass concentration, [g/l];
S – substrate concentration, [g/l];
Fin – feeding rate, [l/h];
V – bioreactor volume, [l];
Sin – substrate concentration in the feeding solution, [g/l];
μmax – maximum value of the specific growth rate, [h−1];
kS – saturation constant, [g/l];
YS/X – yield coefficient, [-].

The growth rate of bacteria E. coli is described according to the classical Monod equation:

μ = μmax
S

kS + S
(6)

The mathematical formulation of the nonlinear dynamic model (Eqs. (3) - (5)) of E. coli
fed-batch cultivation process is described according to the mass balance and the model is
based on the following a priori assumptions:

• the bioreactor is completely mixed;
• the main products are biomass, water and, under some conditions, acetate;
• the substrate glucose mainly is consumed oxidatively and its consumption can be

described by Monod kinetics;
• variation in the growth rate and substrate consumption do not significantly change the

elemental composition of biomass, thus balanced growth conditions are only assumed;
• parameters, e.g. temperature, pH, pO2 are controlled at their individual constant set

points.

For the parameter estimation problem real experimental data of the E. coli MC4110 fed-batch
cultivation process are used. Off-line measurements of biomass and on-line measurements of
the glucose concentration are used in the identification procedure. The cultivation condition
and the experimental data have been presented in (Roeva et al., 2004). Here a brief description
is presented.

The fed-batch cultivation of E. coli MC4110 is performed in a 2l bioreactor (Bioengineering,
Switzerland), using a mineral medium (Arndt & Hitzmann, 2001), in Institute of Technical
Chemistry, University of Hannover. Before inoculation a glucose concentration of 2.5 g/l is
established in the medium. Glucose in feeding solution is 100 g/l. Initial liquid volume is
1350 ml, pH is controlled at 6.8 and temperature is kept constant at 35◦C . The aeration rate
is kept at 275 l/h air, stirrer speed at start 900 rpm, after 11h the stirrer speed is increased in
steps of 100 rpm and at end is 1500 rpm. Oxygen is controlled around 35%.
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Off-line analysis
For off-line glucose measurements as well as biomass and acetate concentration determination
samples of about 10 ml are taken roughly every hour. Off-line measurements are performed
by using the Yellow Springs Analyser (Yellow Springs Instruments, USA).

On-line analysis
For on-line glucose determination a flow injection analysis (FIA) system has been employed
using two pumps (ACCU FM40, SciLog, USA) for a continuous sample and carrier flow rate.
To reduce the measurement noise the continuous-discrete extended Kalman filter are used
(Arndt & Hitzmann, 2001).

Glucose measurement and control system
For on-line glucose determination a FIA system has been employed using two pumps (ACCU
FM40, SciLog, USA) for a continuous sample and carrier flow rate at 0.5 ml/min and 1.7
ml/min respectively. 24 ml of cell containing culture broth were injected into the carrier
stream and mixed with an enzyme solution of 350 000 U/l of glucose oxidase (Fluka,
Germany) of a volume of 36 ml. After passing a reaction coil of 50 cm length the oxygen uptake
were measured using an oxygen electrode (ANASYSCON, Germany). To determine only the
oxygen consumed by cells no enzyme solution were injected. Calculating the difference of
both dissolved oxygen peak heights, the glucose concentration can be determined. The time
between sample taking and the measurement of the dissolved oxygen was Δt = 45 s.

For the automation of the FIA system as well as glucose concentration determination the
software CAFCA (ANASYSCON, Germany) were applied. To reduce the measurement
noise the continuous-discrete extended Kalman filter were used. This program was
running on a separate PC and got the measurement results via a serial connection. A PI
controller was applied to adjust the glucose concentration to the desired set point of 0.1 g/l
(Arndt & Hitzmann, 2001).

The initial process conditions are (Arndt & Hitzmann, 2001):
t0 = 6.68 h, X(t0) = 1.25 g/l, S(t0) = 0.8 g/l, Sin = 100 g/l.

The bioreactor, as well as FIA measurement system and the computers used for data
measurement from the FIA system and for the process control are presented in Figure 1.

2.2 Optimization criterion

In practical view, modelling studies are performed to identify simple and easy-to-use models
that are suitable to support the engineering tasks of process optimization and, especially, of
control. The most appropriate model must satisfy the following conditions:

(i) the model structure should be able to represent the measured data in a proper manner;
(ii) the model structure should be as simple as possible compatible with the first requirement.

On account of that the cultivation process dynamic is described using simple Monod-type
model, the most common kinetics applied for modelling of cultivation processes
(Bastin & Dochain, 1991).

The optimization criterion is a certain factor, whose value defines the quality of an estimated
set of parameters. The parameter estimation is performed based on Hausdorff metric. To
evaluate the mishmash between experimental and model predicted data a modified Hausdorff
Distance is proposed.
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Fig. 1. Experimental equipment

When talking about distances, we usually mean the shortest: for instance, if a point X is said
to be at distance D of a polygon P, we generally assume that D is the distance from X to the
nearest point of P. The same logic applies for polygons: if two polygons A and B are at some
distance from each other, we commonly understand that distance as the shortest one between
any point of A and any point of B. That definition of distance between polygons can become
quite unsatisfactory for some applications. However, we would naturally expect that a small
distance between these polygons means that no point of one polygon is far from the other
polygon. It’s quite obvious that the shortest distance concept carries very low informative
content.

In mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu-Hausdorff
distance, (Rote, 1991) measures how far two subsets of a metric space are from each other. It
turns the set of non-empty compact subsets of a metric space into a metric space in its own
right. It is named after Felix Hausdorff. Informally, two sets are close in the Hausdorff distance
if every point of either set is close to some point of the other set. The Hausdorff distance is the
longest distance you can be forced to travel by an adversary who chooses a point in one of the
two sets, from where you then must travel to the other set. In other words, it is the farthest
point of a set that you can be to the closest point of a different set. More formally, Hausdorff
distance from set A to set B is a maxmin function defined as:

h(A, B) = max
a∈A

{
min
b∈B
{d(a, b)}

}
, (7)

where a and b are points of sets A and B respectively, and d(a, b) is any metric between these
points. For simplicity, we will take d(a, b) as the Euclidean distance between a and b. If sets
A and B are made of lines or polygons instead of single points, then h(A, B) applies to all
defining points of these lines or polygons, and not only to their vertices. Hausdorff distance
gives an interesting measure of their mutual proximity, by indicating the maximal distance
between any point of one set to the other set. Better than the shortest distance, which applied
only to one point of each set, irrespective of all other points of the sets.

In this work the Hausdorff metric is used for first time for solving of model parameter
optimization problem regarding cultivation process models.
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3. Genetic Algorithm

GA originated from the studies of cellular automata, conducted by John Holland and his
colleagues at the University of Michigan. Holland’s book (Holland, 1992), published in 1975,
is generally acknowledged as the beginning of the research of genetic algorithms. The GA
is a model of machine learning which derives its behavior from a metaphor of the processes
of evolution in nature (Goldberg, 2006). This is done by the creation within a machine of a
population of individuals represented by chromosomes. A chromosome could be an array of
real numbers, a binary string, a list of components in a database, all depending on the specific
problem. The GA are highly relevant for industrial applications, because they are capable of
handling problems with non-linear constraints, multiple objectives, and dynamic components
– properties that frequently appear in the real-world problems (Goldberg, 2006; Kumar et al.,
1992). Since their introduction and subsequent popularization (Holland, 1992), the GA
have been frequently used as an alternative optimization tool to the conventional methods
(Goldberg, 2006; Parker, 1992) and have been successfully applied in a variety of areas, and
still find increasing acceptance (Akpinar & Bayhan, 2011; Al-Duwaish, 2000; Benjamin et al.,
1999; da Silva et al., 2010; Paplinski, 2010; Roeva & Slavov, 2011; Roeva, 2008a).

Basics of Genetic Algorithm
GA was developed to model adaptation processes mainly operating on binary strings and
using a recombination operator with mutation as a background operator. The GA maintains
a population of individuals, P(t) = xt

1, ..., xt
n for generation t. Each individual represents

a potential solution to the problem and is implemented as some data structure S. Each
solution is evaluated to give some measure of its "fitness". Fitness of an individual is
assigned proportionally to the value of the objective function of the individuals. Then,
a new population (generation t + 1) is formed by selecting more fit individuals (selected
step). Some members of the new population undergo transformations by means of "genetic"
operators to form new solution. There are unary transformations mi (mutation type), which
create new individuals by a small change in a single individual (mi : S → S), and higher
order transformations cj (crossover type), which create new individuals by combining parts
from several individuals (cj : S × . . . × S → S). After some number of generations the
algorithm converges - it is expected that the best individual represents a near-optimum
(reasonable) solution. The combined effect of selection, crossover and mutation gives so-called
reproductive scheme growth equation (Goldberg, 2006):

ξ (S, t + 1) ≥ ξ (S, t) · eval (S, t) /F̄ (t)
[

1− pc · δ (S)
m− 1

− o (S) · pm

]
.

Differences that separate genetic algorithms from the more conventional optimization
techniques could be defined as follows (Goldberg, 2006):

1. Direct manipulation of a coding – GA works with a coding of the parameter set, not the
parameter themselves;

2. GA searches in a population of points, not a single point;
3. GA uses payoff (objective function) information, not derivatives or other auxiliary

knowledge;
4. GA uses probabilistic transition rules (stochastic operators), not deterministic rules.

Compared with traditional optimization methods, GA simultaneously evaluates many points
in the parameter space. This makes convergence towards the global solution more probable. A

269
Application of Genetic Algorithms and Ant Colony 
Optimization for Modelling of E. coli Cultivation Process



10 Will-be-set-by-IN-TECH

genetic algorithm does not assume that the space is differentiable or continuous and can also
iterate many times on each data received. A GA requires only information concerning the
quality of the solution produced by each parameter set (objective function value information).
This characteristic differs from optimization methods that require derivative information
or, worse yet, complete knowledge of the problem structure and parameters. Since GA
do not demand such problem-specific information, they are more flexible than most search
methods. Also GA do not require linearity in the parameters which is needed in iterative
searching optimization techniques. Genetic algorithms can solve hard problems, are noise
tolerant, easy to interface to existing simulation models, and easy to hybridize. Therefore,
this property makes genetic algorithms suitable and more workable in use for a parameter
estimation of considered here cultivation process models. Moreover, the GA effectiveness
and robustness have been already demonstrated for identification of fed-batch cultivation
processes (Carrillo-Uretaet al., 2001; Ranganath et al., 1999; Roeva, 2006; 2007).

The structure of the GA is shown by the pseudocode below (Figure 2).

begin
i = 0
Initial population P(0)
Evaluate P(0)
while (not done) do (test for termination criterion)
begin

i = i + 1
Select P(i) from P(i − 1)
Recombine P(i)
Mutate P(i)
Evaluate P(i)

end
end

Fig. 2. Pseudocode for GA

The population at time t is represented by the time-dependent variable P, with the initial
population of random estimates being P(0). Here, each decision variable in the parameter set
is encoded as a binary string (with precision of binary representation). The initial population
is generated using a random number generator that uniformly distributes numbers in the
desired range. The objective function (see Eq. (16)) is used to provide a measure of how
individuals have performed in the problem domain.

4. Ant colony optimization

ACO is a stochastic optimization method that mimics the social behaviour of real ants
colonies, which manage to establish the shortest route to feeding sources and back. Real
ants foraging for food lay down quantities of pheromone (chemical cues) marking the path
that they follow. An isolated ant moves essentially at random but an ant encountering
a previously laid pheromone will detect it and decide to follow it with high probability
and thereby reinforce it with a further quantity of pheromone. The repetition of the above
mechanism represents the auto-catalytic behavior of a real ant colony where the more the ants
follow a trail, the more attractive that trail becomes. The original idea comes from observing
the exploitation of food resources among ants, in which ants’ individually limited cognitive
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abilities have collectively been able to find the shortest path between a food source and the
nest.

Basics of Ant Algorithm
ACO is implemented as a team of intelligent agents which simulate the ants behavior,
walking around the graph representing the problem to solve using mechanisms of cooperation
and adaptation. The requirements of ACO algorithm are as follows (Bonabeau et al., 1999;
Dorigo & Stutzle, 2004):

• The problem needs to be represented appropriately, which would allow the ants to
incrementally update the solutions through the use of a probabilistic transition rules, based
on the amount of pheromone in the trail and other problem specific knowledge.

• A problem-dependent heuristic function, that measures the quality of components that can
be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the pheromone value.
• A probabilistic transition rule based on the value of the heuristic function and the

pheromone value, that is used to iteratively construct a solution.

The structure of the ACO algorithm is shown by the pseudocode below (Figure 3).

Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k=0 to number of ants
ant k chooses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

Fig. 3. Pseudocode for ACO

The transition probability pi,j, to choose the node j when the current node is i, is based on the
heuristic information ηi,j and the pheromone trail level τi,j of the move, where i, j = 1, . . . . , n.

pi,j =
τa

i,jη
b
i,j

∑k∈Unused τa
i,kηb

i,k

, (8)

where Unused is the set of unused nodes of the graph.

The higher the value of the pheromone and the heuristic information, the more profitable it
is to select this move and resume the search. In the beginning, the initial pheromone level is
set to a small positive constant value τ0; later, the ants update this value after completing the
construction stage. ACO algorithms adopt different criteria to update the pheromone level.

The pheromone trail update rule is given by:

τi,j ← ρτi,j + Δτi,j, (9)
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where ρ models evaporation in the nature and Δτi,j is new added pheromone which is
proportional to the quality of the solution. Thus better solutions will receive more pheromone
than others and will be more desirable in a next iteration.

5. Numerical results and discussion

For parameter identification of model parameters (μmax, kS, YS/X) of E. coli fed-batch
cultivation process model, GA and ACO algorithms are applied.

5.1 Application of GA for parameter optimization of E. coli cultivation process model

On this subsection we will describe in more details about the application of GA for parameter
optimization of E. coli cultivation process model.

Solution Representation
The strings of artificial genetic systems are analogous to chromosomes in biological systems.
The total genetic package (genotype) in artificial genetic systems is called a structure. In
natural systems, the organism formed by interaction of the genotype with its environment
is called the phenotype. In artificial genetic systems, the structures decode to form a
particular parameter set, solution alternative, or point (in the solution space). Thus a
chromosome representation is needed to describe each individual in the population of interest.
The representation scheme determines how the problem is structured in the GA and also
determines the genetic operators that are used. Each individual or chromosome is made up of
a sequence of genes from a certain alphabet. Here applied alphabet consists of binary digits 0
and 1. Binary representation is the most common one, mainly because of its relative simplicity.
A binary 20 bit representation is considered here. It has been shown that more natural
representations are more efficient and produce better solutions (Chipperfield & Fleming, 1995;
Goldberg, 2006; Michalewicz, 1994). The representation of the individual or chromosome
for function optimization involves genes with values within the variables upper and lower
bounds.

Three model parameters are represent in the chromosome - maximum specific growth rate
(μmax), saturation constant (kS) and yield coefficient (YS/X). The following upper and lower
bounds are considered (Cockshott & Bogle, 1999; Levisauskas et al., 2003):

0 < μmax < 0.7,

0 < kS < 1,

0 < YS/X < 30.

Selection Function
The next question is how to select parents for crossover. The selection of individuals to
produce successive generations plays an extremely important role in a GA. A probabilistic
selection is performed based upon the individual’s fitness such that the better individuals
have an increased chance of being selected. An individual in the population can be selected
more than once with all individuals in the population having a chance of being selected to
reproduce into the next generation. There are several schemes for the selection process -
roulette wheel selection and its extensions, scaling techniques, tournament, elitist models,
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and ranking methods (Chipperfield & Fleming, 1995; Goldberg, 2006; MathWorks, 1999;
Michalewicz, 1994). The selection method used here is the roulette wheel selection.

A common selection approach assigns a probability of selection, Pj, to each individual, j based
on its fitness value. A series of N random numbers is generated and compared against the

cumulative probability, Ci =
i

∑
j=1

Pj of the population. The appropriate individual, i, is selected

and copied into the new population if Ci−1 < U(0, 1) ≤ Ci. Various methods exist to assign
probabilities to individuals: roulette wheel, linear ranking and geometric ranking. Roulette
wheel, developed by Holland (Holland, 1992) is the first selection method. The probability, Pi,
for each individual is defined by:

P[ Individual i is chosen] =
Fi

PopSize
∑

j=1
Fj

, (10)

where Fi equals the fitness of individual i and PopSize is the population size.

The fitness function, is normally used to transform the objective function value into a measure
of relative fitness. A commonly used transformation is that of proportional fitness assignment.

Genetic Operators
The genetic operators provide the basic search mechanism of the GA. The operators are
used to create new solutions based on existing solutions in the population. There are two
basic types of operators: crossover and mutation. The crossover takes two individuals and
produces two new individuals. The crossover can be quite complicated and depends (as well
as the technique of mutation) mainly on the chromosome representation used. The mutation
alters one individual to produce a single new solution. By itself, mutation is a random walk
through the string space. When used sparingly with reproduction and crossover, it is an
insurance policy against premature loss of important notions.

Let X and Y be two m-dimensional row vectors denoting individuals (parents) from the
population. For X and Y binary, the following operators are defined: binary mutation and
simple crossover.

Binary mutation flips each bit in every individual in the population with probability pm
according to Eq. (11) (Houck et al., 1996):

xi =

{
1− xi, if U(0, 1) < pm
xi, otherwise . (11)

Simple crossover generates a random number r from a uniform distribution from 1 to m and
creates two new individuals X′ and Y′ according to Eqs. (12) and (13) (Houck et al., 1996).

x′i =
{

xi, if i < r
yi, otherwise . (12)

y′i =
{

yi, if i < r
xi, otherwise . (13)
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In proposed genetic algorithm fitness-based reinsertion (selection of offspring) is used
(Pohlheim, 2003).

Initialization, Termination, and Evaluation Functions
The GA must be provided an initial population as indicated in step 3 of Figure 2. The most
common method is to randomly generate solutions for the entire population. However, since
GA can iteratively improve existing solutions (i.e., solutions from other heuristics and/or
current practices), the beginning population can be seeded with potentially good solutions,
with the remainder of the population being randomly generated solutions (Houck et al., 1996).

The GA moves from generation to generation selecting and reproducing parents until a
termination criterion is met. The most frequently used stopping criterion is a specified
maximum number of generations.

Evaluation functions of many forms can be used in a GA, subject to the minimal requirement
that the function can map the population into a partially ordered set. As stated, the evaluation
function is independent of the GA (i.e., stochastic decision rules) (Houck et al., 1996).

Genetic Parameters
Some adjustments of the genetic parameters, according to the regarded problem, have to be
done to improve the optimization capability and the decision speed. Primary choice of the
genetic operators and parameters depends on the problem, as well as on the chosen encoding.
The inappropriate choice of operators and parameters in the evolutionary process makes the
GA susceptible to premature convergence. Based on performed pre-test procedures and other
results in (Roeva, 2008a;b), the GA parameters are set as follows.

There are two basic parameters of genetic algorithms - crossover probability and mutation
probability. Crossover probability (xovr) should be high generally, about 65-95%, here – 75%.
Mutation probability (mutr) is randomly applied with low probability – 0.01 (Obitko, 2005;
Pohlheim, 2003). The rate of individuals to be selected (generation gap – ggap) should be
defined as well. In proposed genetic algorithm generation gap is 0.97 (Obitko, 2005; Pohlheim,
2003).

Particularly important parameters of GA are the population size (nind) and number of
generations (maxgen). If there are too low number of chromosomes, GA has a few possibilities
to perform crossover and only a small part of search space is explored. On the other hand,
if there are too many chromosomes, GA slows down. To solve the considered optimization
problem the population size is chosen to be 100 after several algorithm performance pre-tests.
In the same manner the number of generations is set at 200.

For the considered here parameter optimization, the type of the basic operators in GA is
summarized in Table 1. The values of genetic algorithm parameters are listed in Table 2.

5.2 Application of ACO for parameter optimization of E. coli cultivation process model

On this subsection we will describe in more details about the application of ACO for
parameter optimization of E. coli cultivation process model. First we represent the problem by
graph. We need to find optimal values of three parameters which are interrelated. Therefore
we represent the problem with three-partitive graph. The graph consists of three levels. Every
level represents a search area of one of the parameter we optimise. Every area is discretized
thus, to consists of 1000 points (nodes), which are uniformly distributed in the search interval
of every of the parameters. The first level of the graph represents the parameter μmax. The
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Operator Type
encoding binary
fitness function linear ranking
selection function roulette wheel selection
crossover function simple crossover
mutation function binary mutation
reinsertion fitness-based

Table 1. Operators of GA

Parameter Value
ggap 0.97
xovr 0.75
mutr 0.01
nind 100
maxgen 200

Table 2. Parameters of GA

second level represents the parameter kS. The third level represents the parameter YS/X. There
are arcs between nodes from consecutive levels of the graph and there are no arcs between
nodes from the same level. The pheromone is deposited on the arcs, which shows how good
is this parameter combination.

Our ACO approach is very close to real ant behaviour. When starting to create a solution, the
ants choose a node from the first level in a random way. Than for nodes from second and third
level they apply probabilistic rule. The transition probability consists only of the pheromone.
The heuristic information is not used. Thus the transition probability is as follows:

pi,j =
τi,j

∑k∈Unused τi,k
, (14)

The ants prefer the node with maximal probability, which is the node with maximal quantity
of the pheromone on the arc, starting from the current node. If there are more than one
candidate for next node, the ant choses randomly between the candidates. The process is
iterative. At the end of every iteration we update the pheromone on the arcs. The quality of
the solutions is represented by the value of the objective function. In our case the objective
function is the mean distance between simulated data and experimental data which are the
concentration of the biomass and the concentration of the substrate. We try to minimize it,
therefore the new added pheromone by ant i in our case is:

Δτ = (1− ρ)/J(i) (15)

Where J(i) is the value of the objective function according the solution constructed by ant i.
Thus the arcs corresponding to solutions with less value of the objective function will receive
more pheromone and will be more desirable in the next iteration.

The values of the parameters of ACO algorithms are very important, because they manage
the search process. Therefore we need to find appropriate parameter settings. They are the
number of ants, in ACO we can use a small number of ants between 10 and 20 without having
to increase the number of iterations to achieve good solutions; initial pheromone, normally it
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has a small value; evaporation rate, which shows the importance of the last found solutions
according to the previous ones. Parameters of the ACO were tuned based on several pre-tests
according to the considered here optimization problem. After tuning procedures the main
algorithm parameters are set to the optimal settings. The parameter setting for ACO is shown
in Table 3.

Parameter Value
number of ants 20
initial pheromone 0.5
evaporation 0.1

Table 3. Parameters of ACO algorithm

5.3 Objective function

To form the objective function we apply modified Hausdorff distance, which is conformable
to our problem. We have two sets of points, simulated and measure data, which formed two
lines. We calculated the Euclidean distance d(t) between points from two lines corresponding
to the same time moment t. After that we calculate the Euclidean distance from point of one
of the lines in time t to the points from other line in the time interval (t− d(t), t+ d(t)) and we
take the minimal of this distances. This is the distance between two lines in time moment t.
Thus we decrease the number of calculations comparing with traditional Hausdorff distance
because it is obvious that the distance to the points out of the interval (t− d(t), t + d(t)) will
be large. At the end we sum all this distances between the points and the lines. Thereby we
eliminate eventual larger distance in some time moment because of not precise measurement.

When the Least Squares regression is applied as metric, the distance between two lines can be
very big and in the same time it is seen that they are geometrically close to each other. This
can happen especially in the steep parts of the lines. Applying Hausdorff metrics avoids this,
because it measures the geometrical similarity.

Thus, the objective function is presented as a minimization of a modified Hausdorff distance
measure J between experimental and model predicted values of state variables, represented
by the vector y:

J =
m

∑
i=1

h
(
yexp(i), y mod (i)

)2 → min (16)

where m is the number of state variables; yexp – known experimental data; y mod – model
predictions with a given set of the parameters.

5.4 Numerical calculation

Computer specification to run all identification procedures are Intel Core 2 2.8 GHz, 3.5
GB Memory, Linux operating system and Matlab 7.5 environment. Matlab is a technical
computing environment for high computation. Matlab integrates numerical analysis, matrix
computation and graphics in an easy-to-use environment. User-defined Matlab functions
are simple text files of interpreted instructions. Therefore, Matlab functions are completely
portable from one hardware architecture to another without even a recompilation step.

Because of the stochastic characteristics of the applied algorithms a series of 30 runs for each
algorithm is performed. For comparison of the GA and ACO the best, the worst and the
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Fig. 4. Time profiles of the biomass, respectively GA and ACO

average results of the 30 runs, for the J value and execution time are watched. For realistic
comparison the execution time is fixed to be 1h.

The obtained results are presented in Tables 4 and 5. Regarding the Tables 4 and 5 we observe

Parameters Average GA Best GA Worst GA
μmax 0.5266 0.5537 0.5253

kS 0.0163 0.0187 0.0164
YS/X 2.0295 2.0318 2.0536

J 2.0699 1.7657 2.3326

Table 4. Results from parameter identification using GA

Parameters Average ACO Best ACO Worst ACO
μmax 0.5444 0.5283 0.5313

kS 0.0223 0.0174 0.0209
YS/X 2.0256 2.0300 2.0100

J 1.8744 1.6425 2.5322

Table 5. Results from parameter identification using ACO

that the average value of the objective function achieved by ACO algorithm is better than this
achieved by GA algorithm. The best value of the objective function achieved by the ACO
algorithm is better than this achieved by GA algorithm, but the worst result achieved by ACO
algorithm is worst than this achieved by the GA. Thus the interval where the value of the
objective function varies is larger when we apply ACO algorithm than GA algorithm. But
regarding the average value we can say that the most achieved values of the objective function
are close to the best found value. Therefore we can conclude that the ACO algorithm performs
better for this problem than GA algorithm.

The objective function is a sum of the modified Hausdorff distance between the modeled and
measured data of the biomass and substrate. On Figure 4 with line are represented the values
of the modelled biomass and with stars are represented the values of the measured biomass.
In most cases, graphical comparisons clearly show the existence or absence of systematic
deviations between model predictions and measurements. It is evident that a quantitative
measure of the differences between calculated and measured values is an important criterion
for the adequacy of a model. We observe that with both algorithms there is coincidence
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between modelled and measured data. Hence the difference between the values of the
objective function achieved by different algorithms comes from the value of the substrate,
achieved by them.
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On Figures 5 and 6 the modelled substrate is represented by dash line, by solid line is
represented the measured substrate. We observe that the modelled data by the ACO algorithm
are closer to the measured data than this by the GA algorithm.

On Figure 7 is represented the improvement of the value of the objective function during the
execution time. With dash line is represented the improvement of the objective function by
GA. With dash-dot line is represented the improvement of the objective function by ACO
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algorithm. The ACO algorithm achieves much better solution at the beginning, because it is
constructive method. During the time the achieved values of the objective function by both
algorithms become close to each other.

6. Conclusion

In this chapter GA and ACO are applied for parameter identification of a system of nonlinear
differential equations modeling the fed-batch cultivation process of the bacteria E. coli. A
system of ordinary differential equations is proposed to model E. coli biomass growth and
substrate (glucose) utilization. Parameter optimization is performed using real experimental
data set from an E. coli MC4110 fed-batch cultivation process. In considered nonlinear
mathematical model the parameters that should be estimated are maximum specific growth
rate (μmax), saturation constant (kS) and yield coefficient (YS/X). The parameter estimation
is performed based upon the use of a modified Hausdorff metric, in place of most common
used metric – Least Squares regression. Parameters of the two algorithms (GA and ACO) were
tuned based on several pre-tests according considered here optimization problem. Based on
the obtained result it is shown that the best value of the objective function J is achieved by
the ACO algorithm. Comparison of the worst obtained results from the two metaheuristics
is shown that the GA achieved better estimations than ACO. Analysing of average results it
could be concluded that the ACO algorithm performs better for the problem of parameter
optimization of an E. coli fed-batch cultivation process model.
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1. Introduction

The Klatt synthesizer is considered one of the most important formant synthesis. Therefore,
this chapter addresses the problem of automatic estimation of Klatt’s synthesizer parameters
in order to perform the imitation of voice (utterance copy), that is finding the parameters that
causes the synthesizer to generate a voice that sounds close enough to the natural voice,
so that the human ear does not notice the difference. Preliminary experimental results of a
framework based on evolutionary computing, more specifically, in a kind of genetic algorithm
(GA) called Multi-Objective Genetic Algorithms (MOGA), are presented. The task can be cast
as a hard inverse problem, because it is not a simple task to extract the desired parameters
automatically (Ding et al., 1997). Because of that, in spite of recent efforts (Breidegard &
Balkenius, 2003; Heid & Hawkins, 1998), most studies using parametric synthesizers adopt
a relatively time-consuming process (Klatt & Klatt, 1990) for utterance copy and end up using
short speech segments (words or short sentences). GA was chosen to peform this task because
they are known for their simplicity and elegance as robust search algorithms, as well as for
their ability to find high-quality solutions quickly for difficult high-dimensional problems
where traditional optimization methods may fail.

This chapter presents the application of GA to speech synthesis to solve the process of utterance
copy (Borges et al., 2008). With this framework, we use several objective (fitness) functions and
three possible ways of operating: Interframe, Intraframe and/or knowledge-based architectures
with adaptive control of probabilities distribution and stopping criteria according to the
convergence and number of generations. We also intend to fill a gap on the number of
research efforts on developing automatic tools for dealing with formant synthesizers and
help researchers to compare the performance of their solutions. The possibility of automatic
analyzing speech corpora is very important to increase the knowledge about phonetic and
phonological aspects of specific dialects, endangered language, spontaneous speech, etc. The
next paragraphs provide a brief overview of the Klatt’s speech synthesizer, the optimization
problem and the approach using MOGA to solve this.
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2. Speech synthesis

The voice synthesis consists on producing the human voice artificially, using the automatic
generation of voice signal. Aspects as the naturalness or the intelligibility are considered when
you evaluate the quality of the synthesized voice. Many researches on voice synthesis have
been developed for decades and some headway has been achieved, nevertheless the quality of
the terms about the naturalness of the voice produced still presents gaps, principally regarding
the adaptations that the speaking can suffer considering the intonation and the emotiveness
associated to the expressiveness of the content to be synthesized.

The efforts on producing the voice artificially started around the year of 1779 when the
Russian professor Christian Kratzenstein, made an acoustic resonator similar to the vocal tract,
where it was possible to produce the vowel sounds. At a later time, in 1791, Wolfgang von
Kempelen created a machine where it was possible to produce simple sounds or combiners,
and the difference was that the machine had a pressure chamber simulating the lungs, a kind
of vibrating shaft that worked like the human vocal cords and a leather tube representing the
vocal tract, allowing the emission of vowel and consonant sounds through the emission of its
components. In 1800, Charles Wheatstones rebuild a new version of the Kempelen machine
which possessed a more sophisticated mechanism and allowed the production of the vowels
and great part of the consonants, including the nasal ones.

The researches continued, but with the objective of constructing electric synthesizers. In 1922,
Stewart build a synthesizer composed by source that imitated the functionality of the lungs
(excitation) and of the resonant circuits that molds the acoustic resonators of the vocal tract.
With this machine it was possible the unique static generation of the vowel sounds with two
formants. The first device considered a electric synthesizer was the VODER (Voice Operating
Demonstrator) developed by Homer Dudley in 1939. It was composed by a bar to select the
kind of voice (voiced or voiceless) a pedal to control the fundamental frequency and ten keys
that controlled the artificial vocal tract. The basic structure of the VODER is very similar to
the systems used on the model source-filter. Currently, the technology involving the voice
synthesizers evolves and among these the synthesis that stand out are: by concatenation,
articulatory, by formants (rules) and most recently based on Hidden Markov Models (HMM).

The speech synthesizer is the back-end of text-to-speech (TTS) systems (Allen et al., 1987).
Synthesizers are also useful in speech analysis, such as in experiments about perception
and production. Formant-based (Lalwani & Childers, 1991) is a parametric synthesis
very eminent in many speech studies, especially linguistics, because most parameters of a
formant synthesizer are closely related to physical parameters and have a high degree of
interpretability, essential in studies of the acoustic correlates of voice quality, like male/female
voice conversion and simulation of breathiness, roughness, and vocal fry.

3. Formant-based and Klatt’s speech synthesizer

The techniques for voice synthesis can be divided in three classes: direct synthesis, the
synthesis through the simulation of the vocal tract and the synthesis utilizing a model
for the voice production (Styger & Keller, 1994). In the direct synthesis, the signal is
generated through the direct manipulation of the waveforms. An example of this kind is
the concatenative synthesis in which the sound units, like phonemes, are previously recorded
and to produce a new sound, these recorded units are concatenated to compose words and
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sentences. This way, in this category there is no necessity of knowing the mechanisms of
voice production. The synthesis through the simulation of the vocal tract has the objective of
producing the voice through the simulation of the physical behavior of the organs responsible
for the production of the speech. The articulatory synthesis is an example of this category.

The synthesis based on a model for voice production consists on method that utilize the
source-filter model (Lemmetty, 1999) which allows the modeling of the vocal tract through
a linear filter, with a set of resonators that vary in time. The filter therefore is excited through
a source, simulating the vibration of the vocal cords for voiced sounds or the comprehension
of the vocal tract in the case of a noise. This way the sound is created in the vocal tract
and irradiated through the lips. The synthesis by formants, or based on rules, is one of the
most prominent techniques of this category, which is fundamented in a set of rules used to
determine the necessary parameters to synthesize the speech through a synthesizer. In this
synthesis there are two possible structures for a set of resonators: cascade or parallel, since
the combination of the two architectures can be used for a better performance. Among the
necessary parameters for the synthesizes based on rules, the fundamental frequency (F0),
the excitation parameter (OQ), the excitation degree of the voice (VO), the frequency and
amplification of the formants (F1...F3 e A1...A3), the frequency of an additional low frequency
resonator (FN), the intensity of the low and high regions (ALF, AHF) stand out, among others.

The Klatt’s synthesizer (Klatt & Klatt, 1990) is called a formant synthesizer because some
of its most important parameters are the formant frequencies: the resonance frequencies of
the vocal tract. Basically, the Klatt works as follows: for each frame (its duration is set by
the user, often in the range from 5 to 10 milliseconds), a new set of parameters drives the
synthesizer. The initial version of the Klatt was codified in FORTRAN and presented good
results on simulations for the production of a variety o sounds generated by the human speech
mechanism through the correct furnish of parameters of the source control and resonators.
Other versions of this synthesizer were developed, and the KLSYN88 was chosen for this
chapter, implemented on C language. The choice was made because its source code was
donated to the Signal Processing Laboratory (LaPS - Laboratório de Processamento de Sinais)
from UFPA by the Sensimetrics Enterprise (http://http://www.sens.com/, Visited on March,
2010.). Among the main differences between the KLSYN and the KLSYN88, the number of
parameters stands out, because the KLSYN88 has 48 parameters. For a complete description
of parameters of Klatt’s speech synthesizer, the reader is referred to (Klatt & Klatt, 1990). In
the latest versions of Klatt’s, six parameters are not used anymore - they all are assumed to be
zero, reducing our state space to 42 parameters. The problem to solve is: given an utterance to
be synthesized, find for each frame a sensible set of parameters to drive the synthesizer. The
number of parameters and their dynamic range make an exhaustive search unfeasible. GA
was adopted as the main learning strategy.

4. Genetic algorithm

The GAs are mathematics algorithms from the Computational Intelligence area specifically
the Evolutionary Computation (EC), where it searches Nature inspired techniques, the
development of intelligent systems that imitates aspects from the human behavior, such
as: evolution and adaptation. These possess a search technique and optimization based
on the probability, inspired by the Darwinian principle of the evolution of the species, and
on genetics where it utilizes the natural selection and the genetic reproduction through
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the evolutionary operators of selection, crossover and mutation. This way, the most able
individuals will have the chance of a longer longevity with higher probability of reproduction,
perpetuating the genetic codes for the next generations.

Considering a problem in the GA process, this should be modeled through a mathematical
function where the most apt individuals will have a greater or lower result, depending if the
object is to maximize or minimize the function. In a population a lot of individuals can exist
and each one of them corresponds to a possible solution of the mathematical function. If the
function has three variables, for example, each one is represented by a chromosome and their
concatenation composes an individual. A chromosome is composed by various characters
(genes), each one of them are in a determined position (locus), with its determined value
(allele).

The populations are evaluated periodically and it is verified in each one of them which
individuals are more able, and these are selected for the crossover. After the crossover,
each gene that composes the chromosome can suffer mutation. Following this phase of
mutation, a new evaluation of the individuals is made and the ones with greater degree of
fitness, that is the ones with the greatest value of the fitness function (performance function),
will guarantee the survival for the next population. The genetic operators tend to generate
solutions with greater values for the fitness function in which new generations are achieved.
This way, the evolutive cycles are repeated until the stop criterion is achieved, it may be: the
maximum number of generations, the optimization of the process of convergence or loss of
the populational diversity with too similar individuals (do Couto & Borges, 2008).

In addition to the fitness function utilized to measure how much a particular solution will
satisfy a condition, the GAs also need another objective function which is the optimization
object, it can have a set of restrictions to the values of the variables that compose it. These two
functions can be considered identical in optimization numerical problems (Coello et al., 2007).

The GAs present good results, when applied on complex problems that are characterized by:

• Having various parameters that need to be combined in search of the best solution;
• Problems with too many restrictions or conditions that cannot be modeled mathematically;
• Problems with a large search space.

On problems that the optimization with one objective is involved (mono-objective), the GA
will try to find an optimal global solution that can be minimum or maximum. In this case,
the solution minimize or maximize a function f (x) where x is a vector of decision variables of
dimension n, represented by x = (x1, ..., xn) belonging to a Ω universe (Coello et al., 2007).

In optimizations with more than one objective function (multi-objective), the task will be the
search of one or more optimal solutions, being that none of these can be said to be better
than the others considering all of the objectives, because some solutions can bring conflicting
scenarios.

5. Multi-objective Optimization Problem

An optimization problem is multi-objective (MOOP - Multi-objective Optimization Problem)
when it has various functions that should be maximized and/or minimized simultaneously,
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obeying a determined numbers of restrictions that any viable solution should obey. An MOOP
problem can be characterized by the Equation 1 (Deb, 2001).

Maximize/Minimize fm(x), m = 1, 2, ..., M;
subject to gj(x) ≥ 0 j = 1, 2, ..., J;

hk(x) = 0, k = 1, 2, ..., K;
x(L)

i ≤ xi ≤ x(U)
i , i = 1, 2, ..., n.

⎫⎪⎪⎬
⎪⎪⎭ (1)

where x is a vector of n variables of decision x = (x1, x2, ..., xn)
T that consist on a quantity

of values to be chosen during the optimization problem. The limit restriction of the variables

(xi) restricts each variable of decision between the limit below x(L)
i and over x(U)

i .These limits
represent the space values of the variables of decision, or simply the space of decision. The
terms gj(x) e hk(x) are functions of restriction and a solution x that can not satisfy all of
the restrictions and the 2n limits will be considered a non factible solution. Otherwise, it
is considered a factible solution. The set of all the possible solutions is denominated viable
region, search space or simply S. The objective functions f1(x), f2(x), ..., fM(x), together,
are the optimization object and can be maximized or minimized. In some cases a conversion
of a maximization problem into a minimization problem may be necessary to avoid some
conflicting situations.

Differently from a mono-objective problem in which only a function is optimized, and
therefore, a single factible solution, on multi-objective problems there is not only one solution,
but a set of them, because it is considered that there is not a single solution that satisfies the
objective functions simultaneously, and that some solutions are better only on some objectives,
and on others not. Even so, the set of solutions needs to be defined and for this the Optimality
of Pareto Theory is used.

6. Dominance and optimal Pareto solutions

The terminology of Pareto establish that a vector of variables is considered optimum (x∗), if
a non factible vector x exists in which the degradation of a criterion (value of the objective
function) do not cause an improvement on at least another criterion, assuming in this case a
minimization problem as example. Therefore, there are no solutions better than the others
in all criterions but factible solutions (admissible) that sometimes will be better in some
criterions, and sometimes they will not.

The multi-objectives optimization algorithms are based on the domination concept and on
its searches, in which two solutions are compared to verify if a relationship of dominance
is established one over the other. Considering a problem with M objective functions, where
M > 1, the solution x(1) dominates the other solution x(2) if the two following conditions are
met (Deb, 2001):

1. The solution x(1) is not worse than x(2) in all of the objectives, or fi(x(1)) not ≺ fi(x(1)) for
all j = 1, 2, ..., M objectives;

2. The solution x(1) is narrowly better than x(2) in at least one objective, or f j(x1) � fi(x(2))
to at least one j ∈ 1, 2, ..., M.
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where it is considered that the operator ≺ denotes the worst and the operator � denotes the
better. If any of these conditions above is violated, the solution x(1) do not dominates the
solution x(2). If x(1) dominates x(2) (x(1) � x(2)) it is possible to affirm that:

• x(2) is dominated by x(1);

• x(1) is not dominated by x(2);

• x(1) is not worse than x(2).

From this analysis considering the concept of optimality mentioned previously, a set
denominated optimal solutions of Pareto is made. These solutions are considered as
admissible or efficient, being their set represented by P̄∗. The correspondent vectors to
these solutions are denominated non-dominated. The aggregation of various non-dominated
vectors composes the Pareto front (Coello et al., 2007).

The concept of dominance can be applied to define sets of optimal local and global solutions.
The optimal local set of Pareto is defined when, for each x element belonging to the P̄ set,
an y solution does not exist on its neighborhood to dominate another element of the P̄ set
characterizing the belonging solutions to P̄ with a optimal local set of Pareto. If a solution
does not exist in the research space that dominates any other member in the set P̄ constitutes
an optimal global set of Pareto.

In the presence of multiple optimal solutions of Pareto, it is hard to choose a single solution
with no additional information about the problem. Because of that, it is important to find as
many optimal solutions of Pareto as possible, obeying the following objectives:

1. Guide the search as close as possible to the global optimal region of Pareto and;
2. Keep the populational diversity in Pareto optimal front.

7. Non-Dominated Sorting Genetic Algorithm II

The NSGA-II (Non-Dominated Sorting Genetic Algorithm II) is a Multi-Objective Evolutionary
Algorithm (MOEA) based on the a posteriori technique of search with emphasis in the search
for diverse solutions with the goal to generate different elements in the optimal set of Pareto.
The process of decision by a solution is made after (a posteriori) the realization of complete
search by optimal solutions.

This method was proposed in (Deb et al., 2000) as a modification of the original algorithm
mentioned in (Srinivas & Deb, 1994). The main characteristics are the elitism, the ranking
attribution and the crowding distance. The elitism is used as a mechanism for the preservation
and usability of the best solutions found previously on posterior generations. Through
the ranking, the algorithm is achieves the ordering of the non-dominated solutions of the
population. The crowding distance uses an operator of selection by tournament to preserve
the diversity between the non-dominated solutions in the posterior execution stages to obtain
a good spread of the solutions.

In the NSGA-II, the population Qt is created from the parent population Pt, where both have
N individuals and are combined to form together the population Rt, size 2N. After this
junction, it is performed an ordering of the best solutions to classify all the population Rt.
Even though it requires a greater computational effort, the algorithm allows the checking of a
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non global domination between the populations Pt and Qt. With the ending of the ordering
of the non-dominated solutions, the new set Pt is created and filled by solutions with different
non-dominated fronts (F1, F2, ..., Fn). The filling starts with the best non-dominated solution
from the first front, following the subsequent ones. As only N solutions can be inserted in
the new population, the rest of the solutions is simply cast-off. Each Fi set must be inserted
in its totality in the new population, and when |Pt+1|+ |Fi| > N the algorithm introduces a
method called crowding distance, where the most disperse solutions are preferred from the
Fi set and the other ones are cast-off. The daughter population Qt+1 is created from Pt+1
using the operators of selection by tournament, crossover and mutation. The Figure 1 shows
a sequence of the process of the NSGA-II.

Fig. 1. Diagram that shows the way in which the NSGA-II works - Adapted from (Coello
et al., 2007).

To verify the crowding distance, first is calculated the average distance of the two points, both
sides of these points, considering all of the objectives. The quantity di serves as a estimation of
the size of the biggest cuboid that includes the i point without the inclusion of any other point
of the population, being called crowding distance. In the Figure 2, the distance from the i-th
solution in its Pareto front (filled points) is the average lateral length from the cuboid drew by
the dashed lines.

The operator that do the crowding comparison incorporate a modification in the selection
method by tournament that considers the crowding of the solution (crowded tournament
selection operator). So, the solution i is considered a winner in the tournament by a solution
j, if it obeys the following restrictions:

1. The i has the best rank of non-dominance in the population;
2. If both solutions are in the same level, but i has a distance bigger than j (di > dj);

Considering two solutions in different levels of non-dominance, the chosen points are the ones
with lower level. If both points belong to the same front, then it is chosen localized points in
a region with a less number of points, so, solutions with bigger crowding distances.
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Fig. 2. A graphical illustration of crowding distance.

8. Automatically learning the input parameters

The present chapter has the objective of resolving the issue to estimate the values of the input
parameters of a formant synthesizer, as the Klatt for example, aiming to mimicking the human
voice. This problem is considered difficult since the parameters specific the temporization
of the source and the dynamic values for all the filters. Depending on the quantity of the
parameters involved in a possibility of possible combinations can be to big and not viable
of being made manually because each parameter has a vast interval of reasonable values.
According to Figure 3, it is necessary to estimate initial values for the input parameters of the
synthesizer, submitting to the synthesis and then evaluate the synthesized voice through a
comparison mechanism with target voice. After the verification, the values of the parameters
must be adjusted, that is, new re-estimated values are given as input bringing the synthesis
of the voice and a posterior comparison, until the generated voice is as close as possible from
the target.

Fig. 3. General problem description.

The Klatt synthesizer is the most utilized among the synthesizers by formants, that is why
it was chosen as object of this chapter. Besides that, even not being the focus of this study,
the Klatt can be used in TTS systems because it requires low computational cost to produce
the voice in high degree of intelligibility, but generally it is hard to reproduce the exact voice
signal sound emitted by a human speaker (de Oliveira Imbiriba, 2008).

However, another problem appears in consequence of the option of the formant synthesis that
consist in extracting the values of the Klatt’s parameters from a voice. These parameters can
be generated through the TTS systems, as the Dectalk (Hallahan, 1995), but specifically, to a
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single speaker. Some tools and techniques that utilize the signal processing appeared to try to
extract them of voice and not having them from text files, but the results were not satisfied.

Considering the complexity of the problem, the proposal is to utilize this type of model
to estimate automatically the parameters of a formant synthesizer, developing mechanisms
of comparison from voices (synthesized and target) e of adjustments of the re-estimated
parameters, attaching this methodology to a technique of extraction of the parameters from
the voice in which minimizes the degradation of the synthesized voice.

9. GASpeech framework

With the objective of automatizing the imitation of the natural voice (utterance copy), it was
developed in LaPS a methodology that uses MOGA. The methodology called GASpeech was
adapted from NSGA-II algorithm (Deb et al., 2000) and utilizes three architectures, described
later.

As illustrated in Figure 4, the GASpeech starts with the input text file and as exit there is the
synthesized voice. The rectangles represent programs or scripts and the rounded rectangles
correspond to files. First, the text files are submitted to Dectalk (Bickley & Bruckert, 2002)
where it is a TTS system produced by Fonix Corporation. The generated voices by it possess
high intelligibility, but are configured to a single male announcer (Paul). A demo version of
this TTS was provided to LaPS for academical purposes. The Dectalk generate an exit achieve
having 18 parameters in which they are mapped to the 13 parameters of the input file from
HLSyn through the script DEC2HLSyn. The HLSyn is utilized to generate the input file of
the Klatt synthesizer (version KLSYN88), having the 48 necessary parameters to the voice
synthesization. But, of the 48 parameters only 42 are utilized because in this chapter the
parallel resonators bank is not considered because of its values being always zero.

In possess of the files having the target voice and the corresponding values from Klatt’s
parameters, the simulation starts in the GASpeech. The population is initialized randomically
and each individual is a vector composed by 42 parameters according to the motives exposed
previously. The initial population is evaluated taking in consideration the objective functions
that can be: spectral distortion (SD), mean squared error (MSE) and cross correlation (CC).
After the evaluation, a rank is assigned to each individual. Individuals with best ranks are
selected to suffer crossover and mutation. As result, a new population is generated and this
one will take all the evaluative process and the genetic operators until the total number of
generations is achieved or another stop criterion is fulfilled (Figure 5).

The possible architectures are: Intraframe, Interframe, Knowledge-based or a combination of
the last two. Considering that a voice file is composed by various frames, in the Intraframe
methodology, it is believed that each frame is a conventional problem of GA. So, for example,
as the target sentence has the duration of one second and each frame of 10 milliseconds (no
superposition) , then 100 problems of GA are solved independently. To start the simulation,
the population of the first frame is obtained randomically and the user has the option of
utilizing a more adaptive model for the crossover and the mutation or operate them with
a fix value. In the Interframe methodology, the best individuals from the last population
from frame t (obtained rank = 1) are copied to the frame t + 1. Considering that it may
exist a big quantity of able individuals, only 10% of the population can be copied to a
following frame and the other individuals are initialized randomically (Borges et al., 2008).
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Fig. 4. GASpeech’s methodology.

In the Knowledge-based architecture, for each frame, N − 1 individuals from the population
are initialized randomically and the last individual is inserted through correct values of the
Klatt, applying a random variation. The initial idea consists in that this known individual was
extracted from the estimations made in tools such as Praat (Boersma & Weenink, Visited on
June, 2011.) and Winsnoori (Laprie, 2010), but these tools do not utilize the same version
as the Klatt adopted in this chapter, making it necessary therefore the development of a
mapping between the different versions. This architecture also can be utilized in conjunction
with a Interframe. In this case, besides the insertion of an individual partially known in the
population initialized randomically, the best individuals from the previous frame population
can be copied to a initial population of the following frame. This way, it is tried to keep a
previous knowledge in which is widespread to the following populations, lowering this way
the quantity of necessary generations to find the correct value of the Klatt’s parameters in each
frame.
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Fig. 5. Functional scheme of GASpeech.

The stop criterion defined were three, being them:

• Convergence: the simulation is finished when the convergence is obtained, being the
convergence parameter (Δ) configured by the user, it can be the SD, the MSE and/or the
CC delay.

• The maximum number of generations: This criterion is used on traditional GAs and
finishes the simulation when the number of generations (ngen) is achieved, being this the
configured value by the user.

• The number of generations in evolution: In this criterion, when the frame achieves the
percentage (ngenwevolve) of the maximum number of generations with no evolution, the
simulation stops. This value is configured by the user and takes in consideration the
diversity degree, because when the individuals are the same or too similar, this aspect
is not being obeyed.

An individual in the GASpeech is composed by a vector of parameters, and in each frame, a
single individual must be choose to compose the file with various frames to be synthesized
in the end. As the multi-objective optimization can find more than one factible solution, the
software is configured to choose the optimal solution of Pareto with lowest value of SD. The
fact that the choice befall on the spectral distortion is because this function represents a little
better the quality of the generated voice signal, among the other functions. This way, the best
individual is the one in which the spectral distortion is lower or equal to 1. If it does not find
individuals with this characteristic, the process of decision by the best is used according to the
native NSGA-II, based on the elitism, ranking and crowding distance.

On the traditional GAs, the values of the crossover and mutation probabilities are fix,
predefined before the initial execution of the algorithm. However, these options can be
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inefficient since there is a great chance to take the algorithm to minimum places. With it,
(Ho et al., 1999) proposed an heuristic, so the parameters could have their values adapted,
although controlled. This strategy aims to vary the probabilities mentioned starting with
high values and decaying to lower values, considering this way that in the beginning there is
little information about the dominion of the problem and a bigger diversity of the population
is supposed to exist. In the end of the optimization process, there is some knowledge
about the domain and the best solutions must be explored. In the GASpeech, if the options
of the mutation and crossover probabilities utilized are adaptable, the initial values of the
probabilities are lowered according to Equations 2 and 3.

pn+1
m = pn

m − pn
mxδm (2)

pn+1
c = pn

c − pn
c xδc (3)

where δm e δc are the decreased rates for the mutation and the crossover, respectively,
considering a initial value configured for the probabilities of crossover and mutations (p0

m
e p0

c ) and minimum values that they can assume (min(pm) and min(pc)).

As mentioned before, the GASpeech works with multi-objective optimization and three
objective functions are utilized. These are: SD, MSE and CC delay. It was considered that the
lower the value of the three objective functions, better is the individual, so, a way of lowering
the values of the functions is search.

The SD is calculated through a FFT routine (Fast Fourier Transform) that has as objective
evaluate the distortion between the synthesized spectrum (H( f )) and the target (S( f )). The
equation is given by:

SD =

√
1

f 2− f 1

∫ f 2

f 1

[
20 log10

|H( f )|
|S( f )|

]2
d f (4)

The MSE is a manner of quantifying the estimated value from the real one (Imbens et al., 2005).
The calculation is made through the Mean Squared Error and how it is desired to minimize
the error, the Equation 5 must be minimized.

MSE =
1
n

n

∑
j=1

(θt(j)− θs(j))2 (5)

where n is the number of samples per frame, θa(j) and θs(j) are, respectively, the index
samples j of each frame from the waveforms of the target and synthesized voices.

The delay in the CC can be calculated in the following form: consider two sequences x(i) and
y(i) where i = 0, 1, 2...N − 1. The normalized cross correlation r in the delay d is defined as:

r(d) =
∑i[(xi − x)(yi−d − y)]√

∑i(xi − x)2
√

∑i(yi−d − y)2
(6)

where x and y are mean from the x and y series, respectively.

Considering the delay in the CC the third objective of the GASpeech, it is tried to minimize
the delay d for which the function r is maximum, where the signals x and y (Equation 6) are
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frames of the original and synthesized voices. The justification to this fact is that when r is
maximum to d = 0, it means that the signal has maximum correlation in the moment that
there is no delay, then the peaks of these signals tend to be aligned.

10. Experiments

The experiments that are made aim the target-voice generated from the Klatt synthesizer
version KLSYN88 where it utilizes 48 parameters. The acquisition of the target voice to the
various speech sentences was made from a Dectalk TTS system, to a single speaker, Paul. The
sentences were processed one by one, as shown on Figure 6, considering the frequency of
11025 Hz.

Fig. 6. Preparation of the voice files.
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For the experimental effects, nine sentences were chosen considering the variation by phonetic
transcription. Each one of them was labeled as shown on Table 1. To evaluate the generated
voices it was utilized SD, MSE and CC metrics.

Label Description
p1007 You don’t belong in professional baseball.
p1010 We’ll pay you back if you’ll let us.
p1013 Draw each graph on a new axis.
p1016 They assume no burglar will ever enter here.
p1032 The wagons were burning fiercely.
p1036 He had four extra eggs for breakfast.
p1069 He recognized his jacket and trousers .
p1074 Our aim must be to learn as much as we teach.
p1159 Blockade is one answer offered by experts.

Table 1. Sentences used.

The experiments made possess as configuration the combinations of the following options:

• Three objectives: SD, MSE and CC simultaneously, as objective functions.
• Two types of architecture: Interframe and the one combined with the Knowledge-based

architecture, since the Intraframe architecture was less efficient further to the ones
mentioned.

• 10 levels of complexity: the individuals were composed according to the combinations
specified on Table 2.

Label Description
FeB Formants and bandwidths.

FeBF0 FeB and F0.
20par FeB and parameters FNP BNP FNZ BNZ A2F A3F A4F A5F A6F AB.

20parF0 FeBF0 and parameters FNP BNP FNZ BNZ A2F A3F A4F A5F A6F AB.
23par 20par and parameters B2F B3F B4F.

23parF0 20parF0 and parameters B2F B3F B4F.
25par 23par and parameters B5F B6F.

25parF0 23parF0 and parameters B5F B6F.
27par 25par and parameters DF1 DB1.

27parF0 25parF0 and parameters DF1 DB1.

Table 2. Levels of complexity.

To initialize a simulation it is necessary a input file in which is generated by the GASpeech
itself, having the specified configurations on Figure 7. In the example, it is utilized only three
Klatt’s parameters (F1, F2 and F3) being necessary to inform the value zone that each one of
them can receive.

When initializing the simulations it was needed to indicate through the command line the
following options:

• −I <file_name>: the file of parameters to be passed to the GASpeech.
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Fig. 7. GASpeech’s configuration file.

• −T <file_name>.raw: audio file (target voice) in the RAW format.
• −O <file_name>.raw: name of the output file where its generated in the RAW format too,

grouping the best individuals of each frame.
• −C <value>: stop criterion based on the informed value.
• −i <value>: choose by the Interframe methodology with a percentage referring to the best

individuals of each frame that will be copied to the next frame.
• −a: option to do the adaptation of the values related to the crossover and mutation

probabilities.

The utilized values to the parameters during the simulations are described on Table 3.

Parameters Value
Number of generations (ngen) 1000

Population size 200
p0

c 0.9
p0

m 0.5
δc 0.01
δm 0.03

min(pc) 0.1
min(pm) 0.1

Δ 0
ngenwevolve 0.3

Table 3. Parameters used in GASpeech.

The simulations considered three objectives (SD, MSE e CC), adaptations of crossover
and mutations probabilities, Interframe architecture isolated and then combined with
Knowledge-based.

The best results were obtained when it was considered only the formants and the bandwidth
(FeB – 10 parameters). The Interframe methodology combined with the Knowledge-based
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architecture showed slightly better results, being able to find the reasonable solutions in the
previous frame, transferring to the next frame. This caused the increase of the investigation
power (exploitation) and lowered the quantity of utilized generations to find the correct value
of the Klatt parameters to each frame, because of the almost correct values passed through an
individual of the population.

The simulations involving 20, 25 and 27 parameters presents an intelligible generated
voice, to all the sentences mentioned, considering an subjective evaluation. But, from the
simulations with more than 27 parameters, the quality of the voice decays considerably.
This degradation still is most evident when the F0 parameter is considered (fundamental
frequency). The combination of the Interframe architecture with the Knowledge-based, brought
little improvement regarding the obtained results, reducing only the quantity of utilized
generations, until the achievement of the generated voice.

The Table 4 below shows the values of the SD, MSE, and CC obtained to two of the sentences
mentioned before (p1007 e p1010), considering only the FeB, 20, 25 e 27 parameters with the
Interframe and this architecture combined with the Knowledge-based. The values of the metrics
indicate that the MSE and the CC presents little variance between the generated files with a
good quality of voice and the ones with a degraded voice, except when the voice quality is
very bad as in p1007_27par, p1007_27parK, p1010_27par and p1010_27parK. In these cases,
the CC values are negative characterizing a delay between target and synthesized voices.

Label SD MSE CC Subjective
p1007_FeB 0.3176 0 0.0061 Good

p1007_FeBK 0.2271 0 0.0060 Good
p1007_20par 0.7124 0 0.0059 Good

p1007_20parK 0.7415 0 0.0063 Good
p1007_25par 0.6737 0 0.0059 Reasonable

p1007_25parK 0.6146 0 0.0058 Reasonable
p1007_27par 3.2883 0.0084 -0.0223 Bad

p1007_27parK 2.7798 0.0090 -0.0298 Bad
p1010_FeB 0.2991 0 0.0037 Good

p1010_FeBK 0.2671 0 0.0037 Good
p1010_20par 0.6346 0 0.0035 Good

p1010_20parK 0.6534 0 0.0037 Good
p1010_25par 0.6584 0 0.0037 Reasonable

p1010_25parK 0.6363 0 0.0038 Reasonable
p1010_27par 3.3749 0.0098 -0.0168 Bad

p1010_27parK 3.0881 0.0115 -0.0171 Bad

Table 4. SD, MSE and CC values of generated voices.

The SD when evaluated in the file as a whole do not present coherent values according to the
values that you can see in p1007_20par and p1007_20parK when compared to p1007_25par
and p1007_25parK because the generated files with Knowledge-based architecture are a little
better than those generated only by Interframe and therefore should have a lower value for SD.
However, when the SD frame value per frame is considered (Figures 8 - 11), its behavior can
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be observed with more detail, with the possibility of identifying which frames were generated
with the values of the Klatt parameters too different when compared to the target.

In the following Figures the behavior of the SD value can be observed when the quantity
of estimated parameters grows. For each sentence (p1007 and p1010), simulations were
performed using 10, 20, 25 and 27 parameters. In Figures 8 and 9, SD values for each
frame is shown using only the Interframe architecture and this combined with Knowledge-based,

Fig. 8. Spectral Distortion for p1007 sentence with Interframe methodology.

Fig. 9. Spectral Distortion for p1007 sentence with Knowledge-based methodology.

Fig. 10. Spectral Distortion for p1010 sentence with Interframe methodology.
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Fig. 11. Spectral Distortion for p1010 sentence with Knowledge-based methodology.

repectively. May be noted that the Knowledge-based architecture presents lower values of SD by
frame compared with Interframe, indicating that the partially known individual that is inserted
in the population helps to find Klatts parameters value closest to the correct values. The same
analysis is true for the sentence p1010 as shown in Figures 10 and 11. But it is clear that SD
values grows according to the insertion of more parameters to be estimated, indicating the
difficulty that the GASpeech finds when the increases the amount of the variables involved in
the problem.

11. Conclusions

This chapter presented a brief description about the estimation problem of a formant
synthesizer, such as the Klatt. The combination of its input parameters to the imitation of the
human voice is not a simple task, because a reasonable number of parameters to be combined
and each one of them has an interval of acceptable values that must be carefully adjusted to
produce a determined voice.

The GASpeech used genetic algorithm to estimate the Klatt parameters, however the achieved
results were not completely satisfactory, regarding the generated voice when more than 27
parameters are estimated. Good results were achieved only utilizing 10 of the 42 variant
parameters. So, careful adjustments is necessary in the framework such as the application
of the probabilities of mutation and crossover specific to each Klatt parameter, the utilization
of a specific auto-adaptation of these probabilities to a case of real encoding of the variables
(Deb et al., 2007) and an specific treatment to better estimate the values of the fundamental
frequency due to the fact that an incorrect value of this parameter causes a significant
degradation of the quality of the generated voice.

Therefore, it is important to point out that the estimations of the values from the Klatt’s
parameters, with the objective that they will be as close as possible of the real values,
depending on the adequate metric, that really reflect the quality of the produced voice. As
seen in the previous session, SD, the MSE, and the CC delay are not adequate when these
metrics are calculated considering all frames of the voice files because the metrics values
obtained frame by frame is added to obtain an overall average for each synthesized voice file,
and in some situations does not reflect the actual quality of voice. Therefore, it is necessary
to develop a more efficient mechanism for evaluating the quality of the generated voice as a
whole and include it in the GASpeech framework.
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1. Introduction  

Almost all education institutes have problem concerning with scheduling, especially 
university. Many things have to be considered in order to arrange schedule. One of them is 
availability of lecturers. Not all lecturers are available at any time. Some of them are just 
available in some time. Therefore, when schedule is arranged, this thing has to be 
considered. The other things are number of classes and courses offered. Number of classes 
and courses in university timetable are many. Room availability is other thing, budgeting 
and many others.  

In Indonesian education system, undergraduate students can earn their degree after 
finishing at least 144 semester credit units. For one unit course, student should attend 50 
minutes in class, added by 50 minutes for homework and another 50 minutes for 
independent activity. In average one course consists of 3 semester credit units. Therefore, to 
finish their study, students should take about minimum 45 courses. In one semester, 
students take maximum 24 units and minimum 12 units. Normally, it takes about 4 years of 
study for a bachelor degree. It means that each semester students have to take minimum 6 
courses and maximum about 8 courses unless for the last semester student only take 
maximum 14 units, one of them is final project which is counted maximum 6 units. 
Excellence students will finish their study for about 7 semesters. It means that each 
semester, in average they have to take about 22 units.    

It is obvious that within the same semester, all courses have to be scheduled differently one 
and another so that student can take the course without any overlapping schedule. All of 
these courses are registered as a group. Since there are four years of study, then the number 
of different course groups is minimum four for one department. 

For a certain department, the number of students in one batch is very big and it is 
impossible to schedule them for a certain course in one class. Therefore, parallel class most 
likely will happen. Suppose there are 100 students will take a certain course in the same 
semester. Since there are only maximum 25 students in one class, then for that course will be 
opened 4 parallel classes. The schedule of that parallel class does not have to be the same. It 
depends on the lecturer availability time. In addition, there are also possibilities for a certain 



 
Real-World Applications of Genetic Algorithms 

 

304 

course that some classes are merged into one class. Furthermore,  there are not one to one 
mapping between lecturer and courses. One lecturer can teach a number of courses. It will 
cause making the time table harder.     

Universitas Pelita Harapan timetable consists of about 38 departments. The number of 
students intake each year is about 2000 students. The constraints of the time table are firstly, 
there are 10 hours lecture time a day and five days a week. Secondly, there are two types of 
lecture, fulltime and part time lecturer. The part time lecturer maximum is scheduled only 6 
units a week, whereas fulltime is maximum 12 units. There is no constraint with the room. 
However, for some certain courses, there are also laboratory works to be scheduled 
differently. It is also making the time table harder.       

Genetic Algorithm (GA) was powerful to solve assignment problem (Lukas et al, 2005).  GA 
was also used for creating university exam timetable (Burke, et all, 1994). Heuristic search 
was used for solving scheduling (Joshua and Graham, 2008). This chapter proposes a 
method for solving this time table problem by using genetic algorithm combined with 
heuristic search. The role of genetic algorithm is to determine the sequence of all courses to 
be scheduled in one group, whereas the role of heuristic search is to determine time slots 
used to schedule the courses (Thanh, 2007). 

This chapter will be divided into three main parts. The first part discusses about how 
genetic algorithm and also heuristic search can solve scheduling problem. Some related 
works are also included. The second part will be proposed the architecture design of the 
system. The third part will be shown some experiments and discussion after implementing 
the system. Chapter will be closed by the conclusion and also some suggestions to improve 
the system.  

2. Principle of genetic algorithm and time tabling 

2.1 Principle of genetic algorithm  

Genetic Algorithms (GA) are powerful general purpose optimization tools which model the 
principles of evolution (Davis L. 91). They are often capable of finding globally optimal 
solutions even in the most complex of search spaces. They operate on a population of coded 
solutions which are selected according to their quality then used as the basis for a new 
generation of solutions found by combining (crossover) or altering (mutating) current 
individuals. Traditionally, the search mechanism has been domain independent, that is to 
say the crossover and mutation operators have no knowledge of what a good solution 
would be (Bruns93)(Burke et al.94).  

The working principle of a canonical GA is illustrated in Fig. 1. The major steps involved are 
the generation of a population of solutions, finding the objective function and fitness 
function and the application of genetic operators. These aspects are described briefly in the 
subsection below. 

An important characteristic of genetic algorithm is the coding of variables that describes the 
problem. The most common coding method is to transform the variables to a binary string 
or vector. This initial population formulation process is critical. This step is also recognized 
as encoding process.  
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Fig. 1. The Working Principle of a Simple Genetic Algorithm 

GA processes a number of solutions simultaneously. Hence, in the first step a population 
having P chromosomes called individuals is generated by pseudo random generators whose 
individuals represent a feasible solution. This is a representation of solution vector in a 
solution space and is called initial solution. This ensures the search to be robust and 
unbiased, as it starts from wide range of points in the solution space. 

In the next step, individual members, chromosomes of the population represented by a 
string are evaluated to find the objective function value. This is exclusively problem 
specification. The objective function is mapped into a fitness function that computes a fitness 
value for each chromosome. This is followed by the application of GA operators. 

Reproduction or selection is usually the first operator applied on a population. It is an 
operator that makes more copies of better chromosomes in a new population. Thus, in 
reproduction operation, the process of natural selection causes those chromosomes that 
encode successful structures to produce copies more frequently. To sustain the generation of 
a new population, the reproduction of the chromosomes in the current population is 
necessary. For better chromosomes, these should be generated from the fittest chromosomes 
of the previous population.  

There exist a number of reproduction operators in GA literature, but the essential idea in all 
of them is that the above average fitness value of strings are picked from the current 
population and their multiple copies are inserted in the mating pool in a probabilistic 
manner.  

A crossover operator is used to recombine two chromosomes to get a better one. In the 
crossover operation, recombination process creates different chromosomes in the successive 
generations by combining material from two chromosomes of the previous generation. In 
reproduction, good chromosomes in a population are probabilistically assigned a larger 
number of copies and a mating pool is formed. It is important to note that no new 
chromosomes are usually formed in the reproduction phase. In the crossover operator, new 
chromosomes are created by exchanging information among strings of the mating pool.  

The two chromosomes participating in the crossover operation are known as parent 
chromosomes and the resulting ones are known as children chromosomes. It is intuitive 
from this construction that good sub-strings from parent chromosomes can be combined to 
form a better child chromosome, if an appropriate site is chosen. With a random site, the 
children chromosomes produced may or may not have a combination of good sub-strings 
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from parent chromosomes, depending on whether or not the crossing site falls in the 
appropriate place. But this is not a matter of serious concern, because if good strings are 
created by crossover, there will be more copies of them in the next mating pool generated by 
crossover.  

It is clear from this discussion that the effect of crossover may be detrimental or beneficial. 
Thus, in order to preserve some of the good chromosomes that are already present in the 
mating pool, all chromosomes in the mating pool are not used in crossover. When a 
crossover probability, defined here as pc is used, only 100 multiplied by pc per cent 
chromosomes in the population are used in the crossover operation and 100 multiplied by 
(1-pc) per cent of the population remains as they are in the current population. A crossover 
operator is mainly responsible for the search of new chromosomes even though mutation 
operator is also used for this purpose sparingly. 

Many crossover operators exist in the GA literature (Zhao, 2007). One site crossover and two 
site crossover are the most common ones adopted. In most crossover operators, two strings 
are picked from the mating pool at random and some portion of the strings is exchanged 
between the strings. Crossover operation is done at string level by randomly selecting two 
strings for crossover operations. 

Mutation adds new information in a random way to the genetic search process and 
ultimately helps to avoid getting trapped at local optima. It is an operator that introduces 
diversity in the population whenever the population tends to become homogeneous due to 
repeated use of reproduction and crossover operators. Mutation may cause the 
chromosomes to be different from those of their parent. Mutation in a way is the process of 
randomly disturbing genetic information. They operate at the bit level. When the bits are 
being copied from the current string to the new chromosomes, there is probability that each 
bit may become mutated. This probability is usually a quite small value, called as mutation 
probability pm. The need for mutation is to create a point in the neighborhood of the current 
point. The mutation is also used to maintain diversity in the population. 

These three operators are simple and straightforward. The reproduction operator selects 
good chromosomes and the crossover operator recombines good sub-strings from good 
strings together, hopefully, to create a better sub-string chromosome. The mutation operator 
alters a string locally expecting a better chromosome. Even though none of these claims are 
guaranteed and/or tested while creating a chromosome, it is expected that if bad 
chromosomes are created they will be eliminated by the reproduction operator in the next 
generation and if good chromosomes are created, they will be increasingly emphasized.  

Further insight into these operators, different ways of implementations and some 
mathematical foundations of genetic algorithms can be obtained from GA literature (Zhao, 
2007). Application of these operators on the current population creates a new population. 
This new population is used to generate subsequent populations and so on, yielding 
solutions that are closer to the optimum solution. The values of the objective function of the 
chromosomes of the new population are again determined by decoding the strings. These 
values express the fitness of the solutions of the new generations. This completes one cycle 
of genetic algorithm called a generation. In each generation if the solution is improved, it is 
stored as the best solution. This is repeated till convergence as depicted in Figure 2. 
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Fig. 2. The basic GA operations 

Encoding technique used in this research is permutation encoding. In this technique, 
chromosomes are coded in the form of integers. Each integer called gene is uniquely 
assigned to a certain course taught by a lecture. Sequence of integer representing genes in a 
chromosome, determines sequence of courses to be scheduled (Thanh, 2007). For example a 
five-gene chromosome represented by 4 2 3 1 5 means that course represented by integer 4 
will be scheduled first. Later, it will be followed by course represented by others integer 
consecutively. Strings length is a total number of courses to be scheduled in a course group. 
If there are four courses to be scheduled and each of them will be scheduled twice a week, 
then chromosome length is 8.  

Selection is conducted based on truncation selection. Chromosomes are sorted according to 
their fitness value from the biggest to the smallest. Some chromosomes, started from the 
smallest fitness strings, will be replaced by new ones (Zhao, 2007). A new chromosome is 
obtained by reversing the position of all bits in an old chromosome. Unlike other selection 
methods, the truncation selection does not copy the better chromosome to the population 
but create a new one. Number of chromosomes to be replaced is obtained by multiplying 
number of all chromosomes in population with probability of selection. For example, Table 
1 contains five-gene sorted chromosomes. 

If probability of selection is 0.4, it means that the number of old chromosomes that must be 
replaced by new ones is 5*0.4 = 2. Then, the position of genes in the last two chromosomes 
will be reversed. Chromosomes 1 2 5 3 4 will be replaced by 4 3 5 2 1, whereas chromosomes 
5 2 3 4 1 will be replaced by 1 4 3 2 5.  
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Chromosome Fitness 

1 4 5 2 3 1 

3 5 2 1 4 0.95 

2 4 5 1 3 0.7 

1 2 5 3 4 0.5 

5 2 3 4 1 0.3 

Table 1. Chromosomes before selection 

Cycle crossover is applied in this research. The idea behind this method is finding the genes 
cycle between two parents. Genes that are included in the cycle will stay, while the others 
will be swapped between the two parents, in order to form two children (Lukas et al, 2005). 
For example, the two parents used as shown in Figure 3 are 1 5 3 4 2 and 3 4 2 5 1. Genes 
cycle from those two parents is 1 3 2 1. Then, gene 1, 2 and 3 will stay in that position, while 
gene 4 and 5 will be swapped. It can be seen that gene 5 of first parent is swapped with gene 
4 of second parent, and gene 4 of first parent is swapped with gene 5 of second parent. 
Therefore chromosomes of the two children are 1 4 3 5 2 and 3 5 2 4 1. Number of crossover 
is calculated by multiplying number of populations with probability of crossover. It 
represents how many of chromosomes in population will be crossovered.   

In mutation phase, reciprocal exchange mutation is used. Each mutation using this method 
causes two genes mutated at the same time. First step of this method is determining two 
gene positions randomly. Then, genes in those positions are swapped (Lukas et al, 2005). For 
example in chromosome 3 2 5 4 1, the two gene positions chosen are the second and the 
third. Then, genes in those positions that are gene 2 and 5 are swapped. Chromosome 
obtained after mutation is 3 5 2 4 1. Number of mutation in population is counted by 
multiplying chromosome length, number of populations and probability of mutation. 
Number of crossover and number of mutation must be an even number, because in each 
crossover, two chromosomes are combined, while in each mutation, two genes are swapped. 

 
Fig. 3. Cycle Crossover  
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Fitness value is used to determine how good a chromosome is. It indicates what the 
objective of the chromosome is. Usually the value is grether than or equal to zero but less or 
equal to 1. In this research,  the objective is to maximize the number of units being able to 
scheduled divided by total units. So, the more successfully units scheduled courses are, the 
bigger the fitness value of a chromosome is. Each course has a certain unit. This unit means 
how many hour students have to spend their time for that course. If a credit of a course is 2, 
it means that the scheduled course is two hours a week in the timetable consecutively.  

2.1 Time tabling 

A timetable is essentially a schedule which must suit a number of constraints. Constraints 
are almost universally employed by people dealing with timetabling problems (Burke and 
Ross, 1996). Constraints, in turn, are almost universally broken into two categories: soft and 
hard constraints. Hard constraints are constraints, of which, in any working timetable, there 
will be no breaches. For example, a lecturer cannot be in two places at once (Erben and 
Keppler, 1995; Rich 1995). Soft constraints are constraints which may be broken, but of 
which breaches must be minimized. For example, classes should be booked close to the 
home department of that class (Erben and Keppler, 1995). In addition to constraints, there 
are a number of exceptions which must be taken into consideration when constructing an 
Automated Timetabling system.  

In this research, the hard constraints are classrooms must not be double booked, every class 
must be scheduled exactly once, classes of students must not have two bookings 
simultaneously, a classroom must be large enough to hold each class booked to it, lecturers 
must not be double booked, a lecturer must not be booked when he/she is unavailable. 
Some classes require particular rooms; some classes need to be held consecutively. Whereas 
the soft constraints are some lecturers have preferred hours to be scheduled, most students 
do not wish to have empty periods in their timetables, the distance a student walks should 
be minimized, classes should be distributed evenly over the week, classrooms should be 
booked close to the home department of that class, classrooms should not be booked which 
are much larger than the size of the class. In addition, the only exception constraint to be 
considered is a part time lecturer should be scheduled not more then 6 credit units whereas 
a full time is 12 credit units. 

3. The architecture design of the system   

Heuristic search is applied in this research. It uses a 2D matrix called target matrix. This 
matrix is used to find suitable time slots for scheduling courses (Thanh, 2007). There are six 
sets applied in this target matrix. They are course code set M={m1,m2,…}, type course class 
set T={t0,t1,t2,…}, lecturer code set L={l1,l2,…}, class name set C={c1,c2,…}, day set D={d1,d2,…}  
and hour set H={h1,h2,…}. All index set start with one. Only type course class set T has 
member index zero, t0. It indicates only for the case that for a certain course of some parallel 
classes are merged into one class.  

There are close relations among course code set, type course class set and also lecture code 
set. Suppose m1,t1,l1 is one of the relations, it indicates that course code m1 is taught by 
lecture code l1 in type course class code t1. In addition, c1,d1,h1 is also another relation, it 
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means that at day d1 on hour h1 class name c1 is assigned. If m1,t1,l1 is linked with c1,d1,h1, it 
means that course code m1 is taught by lecture code l1 in type course class code t1 be 
scheduled at day d1 on hour h1 with class name c1.   

All pairs of course code, type course class and lecture code have to be connected with all 
pairs of class name, day and hour. This connection is tabulated in a matrix called target 
matrix. Table 2 is an example of target matrix. Each cell vij in which i is row and j is column, 
in target matrix, V = {vij}, has three different values, those are : 

1. vij  = 0 means that certain lecturer time slot represented by this cell is available to be 
scheduled. 

2. vij = -1 means that certain lecturer time slot represented by this cell is not available to be 
scheduled. 

3. vij = 1 means that certain lecturer time slot represented by this cell has already been 
scheduled. 

 

 1 0 1, ,m t l  2 1 1, ,m t l  3 2 2, ,m t l  ... 

c1,d1,h1 1 -1 -1 ... 

c1,d1,h2 1 -1 -1 ... 

c1,d2,h1 -1 1 -1 ... 

c1,d2,h2 -1 1 -1 ... 

c2,d1,h1 1 -1 -1 ... 

c2,d1,h2 1 -1 -1 ... 

c2,d2,h1 0 0 0 ... 

c2,d2,h2 -1 -1 1 ... 

... ... ...   

# of units scheduled 4 2 1 ... 

Table 2. Example of target matrix 

Number of rows needed is equal to number of class names multiplied by number of lecture 
days in a week multiplied by number of lecture hours in a day. From Table 2, there are two 
names of class, c1 and c2, are scheduled in the same day and time that is d1,h1 and d1,h2 for 
course m1 taught by l1. It is possible because the type of class is t0.  It means that it is a merge 
class of n1 and n2.  Number of units scheduled of that column is 4. It represents a number of 
hours has been allocated. 

There are six functions that are applied to each cell in target matrix. Those functions are fm , 
ft , fl , fc , fd and fh, each of which is used to get information about course code, type course 
class, lecturer code, class name, day and hour respectively. As an example, the value of each 
function to cell v11  are fm(v11)=m1,  ft(v11)=t0,  fl(v11)=l1, fc(v11)= c1, fd(v11)= d1,  and fh(v11)= h1. All 
of these functions are used to create target matrix. 
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There are some rules need to be considered in order to fill the target matrix: 

1. If tx ≠ t0  and certain course respectively should be scheduled in class name ith then all 
rows cj ≠ i  in that column should not be filled by 1. In addition, if that course can be 
scheduled at the certain day and hour at that column then that cell at rows ci is assigned 
as 1 and  others consecutive cells in the same day, as many as unit course of that 
column, is also assigned 1.  

2. If tx = t0 means that certain course respectively should be scheduled in ci and cj class 
names. Therefore if and only if cell ci,da,hb = 1 then cell cj,da,hb = 1 at that column. 

3. For each row, there is only maximum a cell that is equal to 1.The others must be -1 or 0. 
4. Course on a column is said to be successfully scheduled only when unit course at that 

column is a factor of total all 1’s cells in that column. 
5. If there is a cell in a column of a row cx, di, hj  is equal to 1 then for all row cy, di, hj have to 

be set -1 for cx ≠ cy at that column. 

For example, there are 3 courses and 4 lecturers to be scheduled within 2 class names, A and 
B, 2 days lecture a week and 3 hours lecture a day. There are also two type course classes, 
namely lecture and lab. It means that n(M)= 3, n(T)=3, n(L)=4, n(C)=2, n(D)=2, n(H)=3. m1 is 
course code opened for mixed class name c1 and c2 and lectured by l1, m2  is course code 
opened for both class name c1 and c2  but their were taught by the some lecturer, l2 with type 
course class t1 as lecture.  m3 is course code also opened for both class, type course class as 
lab, but with difference lecturer, l3 and l4. If course credit of m1, m2 and m3 are 2, 1 and 2 
credits and knowing the lecturer’s availabilities time, we can produce the initial target 
matrix, in Table 3. From that target matrix, it can be determined that lecture code l2 and l4 are 
not available for d1,h1 and d2,h3, while other lecturers are available at any time. These 
information and other constraints are inputted into the system and saved into databases.  

 

 1 0 1, ,m t l  2 1 2, ,m t l  3 2 3, ,m t l  3 2 4, ,m t l  

c1,d1,h1 0 -1 0 0 
c1,d1,h2 0 0 0 0 
c1,d1,h3 0 0 0 0 
c1,d2,h1 0 0 0 0 
c1,d2,h2 0 0 0 0 
c1,d2,h3 0 0 0 -1 
c2,d1,h1 0 -1 0 0 
c2,d1,h2 0 0 0 0 
c2,d1,h3 0 0 0 0 
c2,d2,h1 0 0 0 0 
c2,d2,h2 0 0 0 0 
c2,d2,h3 0 0 0 -1 
# units 0 0 0 0 

Table 3. Example of initial target matrix  
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Suppose that sequence of courses represented by generated chromosome [1 3 2 4] represents 
m1,t0,l1 ; m3,t2,l3 ; m2,t1,l2  and m3,t2,l4  then, the first course to be scheduled is gene chromosome 
code m1,t0,l1 and the last is m3,t2,l4. The result of these is shown in Table 4. It can be seen that 
m1,t0,l1 is successfully scheduled on (c1, d1, h1), (c1, d1, h2) (c2, d1, h1) and (c2, d1, h2). Therefore 
other columns of those rows are set to -1. M3,t2,l3 and m2,t1,l2  are able to be placed but m3,t2,l4  

is failed.  

From Table 4, it can be said that the chromosome [1 3 2 4] is able to allocated 8 units out of 
10 units for that two classes c1 and c2 for 3 courses. The value of 8 over 10 which is 0.8 is 
called as fitness of that chromosome. If the chromosome is [1 4 3 2] then the fitness is 1. The 
fitness of a chromosome represents the time table objective. In this case, the objective is to 
maximize the number of units to be scheduled for each timetable. If number of units 
scheduled for kth column is s(k), p is a maximum column in a target matrix, u(j) means unit 
number of jth course to be scheduled for each class name, and t is total courses of each class 
name, then fitness of a chromosome is defined by (1) 

 1

1

( )

( ) ( )

p

k
t

j

s k
fitness

n C u j

=

=

=
⋅




 (1) 

 
 1 0 1, ,m t l  2 1 2, ,m t l  3 2 3, ,m t l  3 2 4, ,m t l  

c1,d1,h1 1 -1 -1 -1 

c1,d1,h2 1 -1 -1 -1 

c1,d1,h3 -1 1 -1 -1 

c1,d2,h1 -1 -1 1 -1 

c1,d2,h2 -1 -1 1 -1 

c1,d2,h3 0 0 0 -1 

c2,d1,h1 1 -1 -1 -1 

c2,d1,h2 1 -1 -1 -1 

c2,d1,h3 0 -1 0 0 

c2,d2,h1 -1 1 -1 -1 

c2,d2,h2 0 0 -1 0 

c2,d2,h3 0 0 0 -1 

# units 4 2 2 0 

Table 4. Example of target matrix after heuristic search 

University time table consists of many timetables. Since one degree of each department is 
designed for four years studies, then each department has at least four time tables for every 



Solving Timetable Problem by Genetic Algorithm  
and Heuristic Search Case Study: Universitas Pelita Harapan Timetable 

 

313 

semester. That is one time table for every batch. No matter is how big a batch in one 
departement, it has only one time table. It only impacts to the processing time. The bigger 
the batch is the longer the processing time to produce the time table. It is because not only 
the number of rows but also the number of columns in the target matrix will be larger.  

4. Experiment result  

Some experiments are performed to ensure how good the system is. There are 4 course 
groups from year 1 to year 4. In experiments, we would like making time table for odd 
semester data 2008 - 2009. Certain number of courses and lecturers to be scheduled in each 
course group are inputted. For example, in course group year 1 there are 7 courses and 10 
lecturers with 2 type course classes (lecture and lab), 2 class names (A and B), 5 days lecture 
a week and 10 hours lecture a day. Relation among all sets are represented in Table 5. 

From Table 5, it can be concluded that n(M)= 7, n(T)=3, n(L)=9, n(C)=2, n(D)=5, n(H)=10. All 
genes of the chromosome are m1,t0,l1, m2,t0,l2, m3,t0,l2, m4,t0,l3, m5,t0,l6, m6,t0,l5, m7,t1,l6, m7,t1,l7, 
m1,t2,l8, m2,t2,l9, m3,t2,l9, m4,t2,l10, m6,t2,l6. It means there are 13 columns and 100 rows in target 
matrix. After receiving initial data, such as what is the restricted day and time for a certain 
lecturer, what room can be used and also the capacity of that room. The system runs with 10 
chromosomes in a population and 10 generations are set in the experiment, without 
considering probability of selection, crossover and mutation, the maximum best fitness 
value, that is 1, can be achieved. It means that all courses can be scheduled accordingly. 
Therefore, number of populations and generations does not need to be set high. It means 
less time is needed to make a schedule. One of the timetables of the course group year 1 is 
shown in Figure 4.  
 

Course Name 
Lecture Lab 

A B units A B units 

ICT                    (m1) Budi Berlinton  (l1) 3 Monika  (l8) Monika (l8) 2 

Calculus 1         (m2) Nababan           (l2) 2 
Finela     (l9) Finela    (l9) 2 

Calculus 2         (m3) Nababan           (l2) 2 

IPE                    (m4) Sutrisno             (l3) 4 Andree  (l10) Andree (l10) 2 

Discrete Math   (m5) Samuel              (l4) 4   

Statistics            (m6) Gunawan          (l5) 3 Gunawan  (l5) 2 

Reading Skills   (m7) Univ (l6) Univ (l7) 2   

Table 5. Relations among the 6 sets 

The time table where the class meeting will take place should also be defined. From figure 4, 
it is clear that every class meeting has their room. Budi berlinton teaches course ICT on 
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Monday at 7.30 to 10.00 in room B212. The system can define the available room for that 
class by looking room table in the database. It is easy to search the room by comparing the 
room capacity, the location etc, from the requirement of that class. After a room is assigned, 
status of that room is not available any more of that day and hour.  

 

 
 
Fig. 4. One example of time table for the first semester. 

5. Conclusions and further research 

The proposed genetic algorithm and heuristic search are able to solve timetable problem. 
Although, room has not been included in target matrix, system is able to determine which 
room is used to a certain cell in time table. However, if the room is one of the critical factor, 
it should be included in the target matrix. If it happens then it is more likely to create three 
dimension target matrix instead of adding number of column.  

There are some limitations of this research. Firstly, every parallel class of a course group 
which is represented in one target matrix, has to be scheduled to every course defined in 
that time table. Secondly, one lecture course can be scheduled only if there is available space 
consecutively at target matrix at least as much as number of units of the course. If that 
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course has to be split into two segments then the name of that course should be 
differentiated. It could be assumed as two courses. In the experiment, it is showed that 
calculus is divided into calculus 1 and calculus 2. Thirdly, the objective of the system is to 
maximize the number of successful units being able to scheduled, otherwise it should be 
defined accordingly. 
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1. Introduction 

Optical communication networks are an excellent option to establish backbone or transport 
networks due to the high-bandwidth provided by the optical fibres. In this kind of networks 
the information is transmitted through optical fibres in the infrared domain.  Although 
fibres provide high bandwidth for the transmission of information (around 50 THz), the 
current electronic technology cannot work at these bit rates. Therefore, a new technology 
was developed to exploit the bandwidth of the fibre: Wavelength Division Multiplexing 
(WDM). In this technology, the part of the spectrum used to transmit information is divided 
into different channels, each one centred in a different wavelength (or frequency). Then, it 
allows the transmission of several channels through the same fibre by using a different 
wavelength for each of the channels.  

In first optical communication networks, the optical technology was only used for 
transmission between nodes that were directly connected by means of one or more optical 
fibres, i.e., adjacent nodes in the physical network. Therefore, when data should be 
transmitted between two non-adjacent nodes, the information should transverse 
intermediate nodes in which the information is converted into electrical domain in order to 
route the traffic through the appropriate output fibre and then transmit the information in 
the optical domain. In this scenario, the nodes become the bottleneck of the network.  

To solve this problem, new optical networks emerged with the capacity of using the 
wavelength to perform routing functions (Mukherjee, 1997). Thus, a network node can 
distinguish between traffic destined for other nodes and for itself without any processing, as 
it is determined by the wavelength and the input port of incoming data. This kind of 
networks are called Wavelength-Routed Optical Networks (WRONs) and they are based in 
circuit switching. WRONs allows the establishment of optical circuits between two network 
nodes (not necessarily adjacent in the physical topology) for the transmission of 
information. These circuits are called lightpaths. The lightpaths can be permanently (or 
semi-permanently) established in static (or semi-static) WRON, or established and released 
on demand in dynamic WRONs.  

The objective of this chapter is to show a set of single-objective and multi-objective genetic 
algorithms, designed by the Optical Communications Group at the University of Valladolid, 
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to optimize the performance of semi-static Wavelength-Routed Optical Networks. The 
fundamentals of those algorithms, i.e., the chromosome structures, their translation, the 
optimization goals and the genetic operators employed are described. Moreover, a number 
of simulation results are also included to show the efficiency of genetic algorithms when 
designing WRONs. 

2. Wavelength-routed optical networks 

Wavelength Division Multiplexing (WDM) allows the transmission of several data channels 
through an optical fibre. Thanks to this technique it is possible not only to use better the 
huge bandwidth of the optical fibre but also to perform routing in the network nodes in 
order to avoid the bottleneck that can appear due to the electronic processing. In this 
context, the concept of Wavelength-Routed Optical Networks (WRONs) was introduced. 
The basic element in WRON is the lightpath, i.e., an all-optical connection between two 
network nodes even when they are not adjacent in the physical topology (i.e., when there is 
not any fibre connecting the two nodes). In this way, the transmission between the two end 
nodes does not require any electronic processing in the intermediate nodes.  

A lightpath should fulfil two conditions: 

1. Each lightpath should use the same wavelength in all the fibres that it transverses, 
unless the network is equipped with wavelength-converters in the nodes, but this is not 
considered in this work. This restriction is known as the wavelength continuity constraint. 

2. Two lightpaths cannot use the same wavelength in the same fibre. However, it is 
possible to reuse wavelengths in different network fibres. 

1
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Fig. 1. Example of a wavelength-routed optical network (WRON). Eight bidirectional 
lightpaths have been established using only two wavelengths 

In Fig. 1, a WRON with eight bidirectional lightpaths using only two wavelengths is shown. 
Moreover, it is shown that a lightpath can be established between adjacent source and 
destination nodes (for instance, between nodes 5 and 4), or traversing one or more 
intermediate nodes. For instance, the lightpath between nodes 5 and 3 traverses node 4, 
which is in charge of properly routing the optical signal with no need to perform conversion 
to the electronic domain. Note that a lightpath can also be established in a unidirectional 
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way, or even being bidirectional but following different routes and wavelengths for each 
direction. 

In principle, we could think about establishing one lightpath between each source-
destination pair (or even more), but this option is not always appropriate. In a network with 
N nodes, N–1 transmitters (and receivers) are required at each node, and N(N–1) 
unidirectional lightpaths should be established, so that the number of wavelengths required 
can be high as well as the cost of the network, due to the number of transmission and 
reception equipments needed, and to the requirements on wavelength-handling capacity of 
the optical crossconnects (OXC) and optical add and drop multiplexers (OADM). Moreover, 
the utilisation of a high number of wavelengths may degrade the quality of the transmission 
due to physical impairments. This effect can provoke that some of the connections cannot be 
established due to not reaching enough quality level. 

Therefore, instead establishing lightpaths in a permanent o semi-permanent way between 
each source-destination pair of the network, one solution consists in establishing only a 
subset of them. In this way, a lower number of transceivers per node and a lower number of 
wavelengths are required. The drawback is that not all the traffic can be transmitted directly 
from the source node to the destination node (single-hop communication), but traffic 
between pairs of nodes which are not directly connected by a lightpath must traverse one or 
more intermediate nodes where conversion to the electronic domain is performed. 
Therefore, it is a multihop scenario. Moreover, this solution usually implies a static or semi-
static situation as lightpaths are permanently or semipermanently established, although in 
some cases some of them can be deleted and new ones can be established, for instance to 
adapt to changes in the traffic offered to the network or to react to network failures. 

3. Genetic algorithms 

Genetic algorithms (GAs) (Goldberg, 1989; Man et al., 1999) are search algorithms based on 
the mechanics of natural selection and natural genetics, where stronger individuals are the 
likely winners in a competing environment. Genetic algorithms represent each solution to 
any problem as an individual represented by a set of parameters. These parameters are 
regarded as genes and can be structured on a string or chromosome. The fitness of each 
individual is the objective parameter that we want to optimize.  

An initial population is created, randomly most of the times, and then evolved by means of 
genetic operators, such as reproduction, crossover and mutation, to form a new population 
(the next generation) that is hoped to be fitter than the previous one. The reproduction 
operator creates a literal copy of selected individuals from the parent population in the 
descendant generation. The crossover operator is applied to pairs of individuals in order to 
interchange their genetic material. To generate a good offspring, a good mechanism for 
selecting parents is necessary. Roulette wheel selection is one of the most common 
techniques. When using this method, the probability of selecting an individual is 
proportional to its health (or fitness). In this way, good properties should propagate down 
the generations. On the other hand, the mutation operator makes a random change in the 
genetic material of a single individual, allowing the GA to explore new corners of the search 
space and hence avoiding the risk of being trapped in a local optimum. The evolution 
process is repeated a predefined number of iterations or until another criterion is met. Since 
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individuals from the population become fitter throughout the generations, it is hoped that 
the final population will contain an optimal or near optimal solution. 

Finally, it should be remarked that GAs are generic methods that have to be customized to 
the particular problems that we attempt to solve. Therefore, the design of the encoding 
mechanism of the individuals and the different operators of GAs must be adapted to the 
characteristics of the problem being tackled, since they have a significant impact on the 
performance of the algorithm. 

4. Multi-objective optimization: Pareto optimality with genetic algorithms 

Pareto optimality (Man et al., 1999) is based on the concept of the dominant individual. In an 
n-objective optimisation problem, where fi(u) is the result of evaluating the individual u 
according to the objective function i, and assuming that lowest values of fi(u) are preferred, u 
is said to be dominated by v if 

 ( ) ( ) 1,2,...,i if u f v i n≥ ∀ =  (1) 

and if  

 ( ) ( )1,2,...,  such that j jj n f u f v∃ = >  (2) 

Then, the ranking of an individual is defined as the number of individuals for which it is 
dominated. The set of optimal individuals is called the Pareto optimal set and it is defined as 
the set of individuals with ranking zero, i.e., those that are do not dominated by anyone. 
Hence, each solution that belongs to the Pareto optimal set is characterized because it cannot 
be simultaneously improved in terms of all the optimization objectives. 

Fig. 2 shows an example of a set of solutions provided by a multi-objective method in which 
each solution is represented in terms of two optimization objectives f1 and f2. In both 
optimization objectives lower values are preferable than higher ones. The number that it is 
represented near each point (solution) is the ranking of the individual. Moreover, the Pareto 
optimal set is also represented. 

 
Fig. 2. Examples of the set of solution obtained by a multi-objective method represented in 
terms of two optimization objectives f1 and f2. Lower values are desirable in both objectives. 
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Pareto optimality can be combined with genetic algorithms in order to solve multi-objective 
optimization problems. In single-objective problems the roulette wheel method, according 
to the individual fitness, is utilized as selection process, but when Pareto optimality is 
combined with genetic algorithms in order to solve multi-objective optimization problem, 
one possible method to perform the selection is that all the individuals in the Pareto optimal 
set have the same probability of being selected for a reproduction or crossover stage. 
Moreover, the selection of the individuals that will take part in the next generation is done 
by selecting only those solutions from the descendant population which belong to the Pareto 
optimal set. Then, every individual in the population belong to the Pareto optimal set and 
all of them have the same probability of being selected for a reproduction or crossover stage. 

5. Optimization of semi-static WRON 

As it was explained in the previous section, the establishment of a lightpath between each 
pair of the nodes of the network can be a technical or economical unfeasible option. 
Therefore, a common solution consists in establishing only a subset of connections. This 
subset of connections is called the virtual (or logical) topology, and it is the network 
topology seen by the protocols from the upper layer in the communication protocol tower 
(Mukherjee, 1997). In Fig. 3 it is possible to see the physical topology (i.e., the physical 
network where each link of the topology consists of two pair of fibres between a pair of 
nodes, each one in a direction) from the network shown in Fig. 1. The virtual topology of the 
network shown in Fig 1 is represented in Fig. 4. 

 
Fig. 3. Physical topology from the network 
shown in Fig. 1 

Fig. 4. Virtual topology from the network 
shown in Fig. 1 

5.1 Virtual topology design problem 

The optimization problem of designing a virtual topology, given a physical topology and a 
matrix of traffic to be carried by the network, is shown to be NP-complete. It is usually 
divided into three subproblems (Mukherjee, 1996): 

1. To determine which network nodes should be connected by lightpaths, i.e., to 
determine the interconnection pattern in the virtual topology.  
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2. To find a route for each of those lightpaths in the physical network, and to assign an 
available wavelength to it. This subproblem is known as the static routing and 
wavelength assignment (RWA) problem. 

3. To route traffic on the virtual topology. 

Due to the relationship between the three subproblems, some of them are usually solved 
jointly. The most common method consists in adopting an intermediate solution, and not 
trying to solve all subproblems jointly nor each subproblem separately. The method consists 
in solving some of the subproblems jointly. There are a number of possibilities but the most 
usual one is to solve subproblems (1) and (3) jointly, and then subproblem (2). 

Now, we present the mathematical definition of the problem of designing a virtual topology 
for a WRON, taking into account the three subproblems into which it is divided. The 
problem can be described as a Mixed Integer Linear Programming formulation (MILP). The 
notation followed is borrowed from (Dutta & Rouskas, 2000). As an example, the objective 
of the formulation will be the minimization of the congestion (i.e., the traffic carried by the 
most loaded lightpath). We describe here all the equations for completeness and then add a 
constraint for lightpath routing that reduces the computing time required to solve the 
problem. The following notation is used: 

• s and d are used as subscript or superscript and denote the source and the destination of 
a traffic flow, respectively. 

• q is an index to distinguish between the lightpaths between the same pair of nodes. 
• i and j denote source and destination nodes, respectively, of a lightpath. 
• m and n denote endpoints (nodes) of a physical link. 
• f is an index to identify the number of the fibre used among the fibres between two 

nodes. 
• k is the wavelength assigned to a lightpath 

Given: 

• N is the number of nodes in the network. 
• W is the number of wavelengths per fibre. 
• Δ is the logical degree of the nodes, i.e., the number of transmitters placed in each node. 

For simplicity we assume that each node is also equipped with the same number of 
receivers. 

• F is the maximum number of fibres between two nodes. 
• Q is the maximum number of lightpaths that can be established between a pair of 

nodes. In order to do not exceed the logical degree: 

 Q ≤ Δ  (3) 

• Λs,d is the traffic from node s to node d.  
• pm,n,f is a binary variable that denotes whether there is a fibre between nodes m and n. 

pm,n,f takes the value 1 if there are at least f fibres between nodes n and m and takes the 
value 0 otherwise. 

  [ ], , , ,( 1) 1, 1m n f m n fp p f F+≥ ∈ −    (4) 

• dm,n,f is the propagation delay in the fibre f between the nodes m and n. 
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• Dmin
i, j is the propagation delay between the nodes i and j following the shortest path in 

terms of propagation delay. This value can be estimated using the Dijkstra algorithm 
modified with the use of weights in the different links (Johnsonbaugh & Schaefer, 2004) 
and each weight is the propagation delay in that fibre (dm,n,f). 

Variables: 

• bi,j,q is a binary variable that denotes if the lightpath q between node i and node j is 
established. Note that in this nomenclature i is the source node for this lightpath and j is 
the destination node. It is important to remark this point since in our definition the 
lightpaths are unidirectional. bi,j,q = 0 means that the lightpath q between nodes i and j is 
not established. bi,j,q takes the value 1 when this lightpath between these two nodes is 
established.  

• ,
, ,
s d
i j qλ is a variable to represent how much traffic from node s to node d uses the 

lightpath q between nodes i and j. 
• , ,i j qλ is the traffic that is carried by the lightpath q between nodes i and j. 

• maxλ is the traffic carried by the most loaded lightpath, i.e., the network congestion. 

• , ,
k
i j qc is a binary variable that takes the value 1 if the lightpath between i and j uses the 

wavelength k, and 0 otherwise. 
• ( ), , , ,k

i j qc m n f  takes the value 1 if the lightpath between nodes i and j uses the fibre 

between nodes m and n and uses the wavelength k, and 0 otherwise. 

Objective: 

 Minimize λmax (5) 

Constraints: 

• Degree constraints: 

 , ,
1 1

QN

i j q
j q

b i
= =

≤Δ ∀  (6) 

 , ,
1 1

QN

i j q
i q

b j
= =

≤Δ ∀  (7) 

Both restrictions limit the number of lightpaths that can be established depending on the 
maximum number of transmitters, eq. (6) and receivers, eq. (7).  

• Routing and wavelength assignment constraints: 

 , , , ,
1

, ,
W

k
i j q i j q

k

c b i j q
=

≤ ∀  (8) 

 ( ), , , ,, , , , , , , ,k k
i j q i j qc m n f c i j q k m n f≤ ∀  (9) 



 
Real-World Applications of Genetic Algorithms 

 

324 

 ( ), , , ,
1 1 1

, , , , ,
QN N

k
i j q m n f

i j q

c m n f p k m n f
= = =

≤ ∀  (10) 

 ( ) ( )
, ,

, , , , , ,
1 1 1 1 1 1

, , , , , , ,

0 ,

i j qF W N F W N
k k
i j q i j q i j q

f k l f k l

b m i

c m l f c l m f b m j i j q m

m i m j= = = = = =

=


− = − = ∀
 ≠ ≠

   (11) 

Eq. (8) ensures that each lightpath uses one, and only one, wavelength. Eq. (9) makes that 
the same wavelength is used in all the fibres that each lightpath traverses. Eq. (10) avoids 
collisions, i.e., avoids the possibility that different lightpaths use the same wavelength in the 
same fibre. Eq. (11) is based on the flow conservation constraints given in (Dutta & Rouskas, 
2000) and it is the equation to ensure that the routing of the lightpath over the physical 
network is continuous along the route. 

• Traffic constraints: 

 ,
, , , ,

1 1

, ,
N N

s d
i j q i j q

s d

i j qλ λ
= =

= ∀  (12) 

 , , max ,i j q i jλ λ≤ ∀  (13) 

 , ,
, , , , , , , ,s d s d

i j q i j qb i j q s dλ ≤ ⋅ Λ ∀  (14) 

 

,

, , ,
, , , ,

1 1 1 1

, ,
0 ,

s d

Q QN N
s d s d s d
i j q j i q

j q j q

s i

d i s d i
s i d i

λ λ
= = = =

Λ =
− = −Λ = ∀
 ≠ ≠

   (15) 

Eq. (12) defines the traffic load assigned to the lightpath q between node i and j. The 
congestion is defined in the Eq. (13). The restriction of eq. (14) avoids that traffic can be 
routed over a non-existing lightpath. Traffic flow conservation constraints given by Eq. (15) 
guarantee the conservation of the traffic demand Λs,d along the routes between the source 
and destination. 

In order to speed up the process, one more constraint is added. 

 ,
, , , , min

1 1 1

( , , ) , ,
N N W

i jk
i j q m n f

m n k

c m n f d D i j q
= = =

⋅ ≤ ∀  (16) 

By the Eq. (16) a lightpath can only be established using one of the shortest paths between 
the source and destination of the lightpath.  

5.2 Network provisioning problem 

Most network operators have already deployed their fibre networks and they are currently 
using a set of locations (network nodes) to aggregate and disaggregate the traffic that goes 
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through it. As the cost of the physical installation is the main capital expenditure when a 
fibre network is built, the optimization methods to be developed in order to upgrade these 
first generation optical networks to WRONs (while being cost efficient), should use the 
current physical topologies as an input parameter. Hence, the problem of the design of a 
WRON starts with the decision about the number of transmitters and receivers that will be 
used in it and their placement among the network nodes.  

On the other hand, WRONs rely on Wavelength Division Multiplexing (WDM) to increase 
the capacity of the network and also to make the optical routing of the lightpaths. Hence, it 
is also necessary to determine the number of wavelengths that will be utilized in the 
network. In this sense, the use of less wavelengths is preferred because it is cheaper as it 
allows to utilize simpler tunable transmitters and receivers and reduces the complexity of 
the OXCs.  

Therefore, the network provisioning consists of deciding the number of wavelengths, 
transmitters and receivers and choosing how many transmitters and receivers will be placed 
in each network node. Note that the optimal solution could require equipping each node 
with different numbers of these devices. The design of a virtual topology depends on the 
network provisioning. Hence, in order to design a proper wavelength-routed optical 
network, the network provisioning and the design of the virtual topology should be 
considered jointly. However, most of the current methods do not solve both issues together 
as it is even more complex that only designing the virtual topology. Therefore, it is possible 
to modify the mathematical definition shown in the previous section to include the problem 
of network provisioning together with that of virtual topology design. Considering that: 

• Txmax is the maximum number of transmitters that can be used in the network.  
• Rxmax is the maximum number of receivers that can be used in the network. As no 

lightpath protection is introduced in this formulation and as each lightpath requires a 
transmitter and a receiver, the number of these to parameters should be equal in order 
not to waste money. 

 max maxTx Rx=  (17) 

• iTx  is the number of transmitters that should be placed at node i. 

 , ,
1 1

QN

i i j q
j q

Tx b
= =
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• jRx  is the number of transmitters that should be placed at node j. 

 , ,
1 1

QN

j i j q
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Then, it is necessary to change Eqs. (6) and (7) by the next two equations: 
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5.3 Genetic algorithms to design virtual topologies 

In (Durán et al., 2009a) Durán et al. propose GALD (Genetic Algorithm for Logical topology 
Design).  GALD is a method designed to solve the full problem of virtual topology design, 
i.e., to solve the three subproblems shown in section 5.1 jointly. In this section, this work will 
be presented and complemented with the different versions of the algorithm proposed by 
the authors. Its chromosome encoding, its translation, the evolution operators used and a 
summary of performance results will be presented. 

5.3.1 Chromosome encoding and translation 

The chromosome structure in GALD consists of a sequence of genes where each gene 
represents a source-destination node pair.  

When the chromosome is interpreted in the translation stage, GALD takes each gene in 
order and tries to establish a unidirectional lightpath between the source and the destination 
node, subject to the available set of resources. Any of the methods proposed in the literature 
to solve the RWA problem can be used but a fast method is preferred, hence, we use pre-
calculated shortest paths (in terms of propagation delay) in order to solve the routing, and 
the first-fit heuristic (Zang, 2000) to assign a wavelength to each lightpath. Every time that a 
gene in the chromosome is read, GALD looks for the lowest available wavelength in any of 
the shortest paths between the source node and the destination node represented by the 
gene. If an available wavelength is found, the lightpath is established. Otherwise, the 
lightpath is not established. 

Fig. 5 shows an example of both the chromosome encoding and the translation stage. Each 
node in the sample network has two transmitters and two receivers, each cable consists of 
two fibres of the same length (one for each direction), and each fiber is equipped with only 
one wavelength. When the translation stage takes place, each pair of source-destination  
nodes (gene) is read from the chromosome. The first three genes are converted into 
lightpaths because there are enough free resources for their establishment. However, when 
the algorithm tries to establish the lightpath represented by the fourth gene, it discovers that 
there is no free wavelength in the shortest path between D and B, therefore this connection 
cannot be established and is not included in the logical topology. After that, the algorithm 
tries to establish the lightpaths represented by the final two genes of the chromosome and, 
as there are enough resources, both of them are established. The resulting logical topology is 
shown in the figure. 

When the chromosome is completely translated, GALD checks whether the logical topology 
obtained is connected, i.e., there should be at least one possible path in the virtual topology 
between all the network nodes. If the topology is not connected, the logical topology is 
rebuilt by first establishing a set of lightpaths forming a Hamiltonian circuit (Johnsonbaugh 
& Schaefer, 2004, pp. 75-77) and then it continues by trying to establish additional lightpaths 
according to the information in the chromosome following the method presented above. 
Then, the traffic is routed in this virtual topology following the shortest paths in terms of 
hops, similarly as it is done in IP routing protocols.  
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Fig. 5. Example of the proposed chromosome structure and the translation stage. 

5.3.2 Initial population 

When a new request arrives at the centralized control node to design a virtual topology, it 
considers the matrix of traffic demands and launches the GALD algorithm. The initial 
population of GALD is created randomly except one individual that is created following the 
ideas of a very fast heuristic to design virtual topologies with low congestion: HLDA 
(Heuristic for Logical topology Design Algorithm) (Ramaswami & Sivarajan, 1996). Hence, 
the matrix of traffic demand is ordered from the highest to the lowest one. Then, this first 
individual is created selecting as the first gene the source-destination with the highest traffic 
demand, the second gene should represents the source-destination pair with the second 
highest demand and so on. This chromosome will ensure that the health of the fittest 
individual of the initial population will be better, in most of cases, than the health of the 
fittest individual of a completely randomly created initial population.   

5.3.3 Genetic evolution and operators 

During the evolution process (i.e., when the genetic operators are applied), GALD uses the 
roulette wheel selection mechanism to select the parent individual. Once the first parent 
(parent 1) has been chosen, it is necessary to decide if a reproduction stage or a crossover 
stage will take place. The former stage is selected with probability 1– pcross and the later with 
probability pcross. In the reproduction stage, the individual selected will be copied to the new 
population without changes. In the crossover stage, it is necessary to select another 
individual (parent 2) to make the combination and interchange their genetic material. This 
individual (parent 2) is also selected with the roulette wheel selection mechanism. However, 
this time the first selected individual (parent 1) cannot be picked out again in order to avoid 
a veiled reproduction stage. Once both parents have been selected, the crossover operator 
randomly selects a gene position. Then, the parent chromosomes are divided into two 
halves by that gene and children are made by interchanging the second halves of their 
parents. These processes of selection, reproduction and crossover are repeated until the 
number of individuals in the descendant population (DP) is reached.  
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The mutation operator selects the genes one by one in each chromosome from the 
descendant population and mutates them according to a probability pmutation. If mutation is 
necessary, the gene is interchanged by another one randomly chosen among the rest of 
possible values that a gene can take. 

After applying the evolution operators, the P fittest individuals from the descendant 
population are selected to be the parent population for the next generation.  

The chromosome structure used for GALD and its translation process makes that each gene 
position is dominant over the subsequent ones, so it has greater impact on the resulting 
logical topology. Hence, the crossover and mutation operators are improved by making that 
there is more probability to choose as crossover point or as gene to be mutated a gene from 
the first positions in the chromosome than from the latest ones. This is made because when 
these changes are done in the first genes, the outcomes of applying these operators will be 
more perceptible.  

The stopping criterion is set on the maximum number of generations or on the computation 
time that the algorithm is allowed to find the solution. One advantage of GALD is that it can 
be used in a reconfigurable WDM network as the optimization process can be stopped at 
any time (if required) in order to give the best virtual topology found up to the moment.  

5.3.4 Fitness function 

As it is explained in section 5.4.1, when the chromosome is translated, the set of lightpaths 
that will be established are determined, the route and the wavelength used by them is 
decided, and the traffic is routed over this virtual topology. Then, once the traffic is routed 
on the virtual topology, the congestion and the delay can be estimated. Different versions of 
GALD have been presented depending on its fitness function: 

• Traffic Optimization: 
• C-GALD (Congestion optimized – GALD) (Durán et al., 2009a): It is a single-

objective version of GALD in which the objective is the minimization of the 
network congestion (i.e., the traffic carried by the most loaded lightpath). 

• F-GALD (Fairness optimized – GALD) (Durán et al., 2009a): a variation to optimize 
the fairness of the network (whether traffic is uniformly distributed over the 
established lightpaths). The fairness can be measured by means of the Jain index, 
which is defined as 
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where L is the number of lightpaths in the virtual topology and λi is the traffic carried by 
lightpath i. Hence, this index can take values from 1/L in the worst case to 1 in the fairest 
case. So, if the Jain index is close to 1, all lightpaths will carry a similar amount of traffic.   
• CF-GALD (Congestion and Fairness optimized – GALD) (Durán et al., 2009a): a 

version of GALD that optimizes both congestion and fairness. When using this 
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method, new individuals need to improve both congestion and fairness to be 
considered as the best topology found until that moment. 

• Delay Optimization: 
• MD-GALD (Mean Delay optimized – GALD) (Durán et al., 2009b): It is a single-

objective version of GALD in which the mean end-to-end delay is the parameter 
employed to evaluate the fitness of an individual. This parameter is estimated 
using method shown in ((Durán et al., 2009b). 

• MxD-GALD (Maximum Delay optimized – GALD) (Durán et al., 2009b): It is a 
single-objective version of GALD in which the parameter to be optimized is the 
average end-to-end delay of the most delayed traffic flow. 

• Traffic and Delay Optimization: 
• DC-GALD (Delay and Congestion – GALD) (Durán et al., 2009c): It is a multi-

objective version of GALD that employs the classic technique of making a random 
choice of the fitness criterion (end-to-end delay or congestion, each with 0.5 
probability) in order to determine which individuals survive in the next generation. 

• PDC-GALD (Pareto optimality of Delay and Congestion – GALD) (Durán et al., 
2009c): It is a multi-objective version of GALD, based on Pareto optimality 
techniques, which jointly optimizes congestion and end-to-end delay. 

5.3.5 Results obtained with the methods 

Firstly, in Table 1, the performance of C-GALD is compared in terms of network congestion 
and computing time with that obtained by the MILP formulation shown in section 5.1 with 
both the basic MILP formulation (Eq. 3 to 15), and with an extension which considers an 
additional constraint that only allows routing lightpaths through the shortest paths (Eq. 16). 
The former formulation is denoted by MILP and the latter by SP-MILP (Shortest-Paths 
MILP). Two networks with different numbers of nodes were used as physical topology and 
each node was equipped with three transmitters and three receivers. The traffic load 
between each pair of nodes was set to 0.3 (i.e., the 30% of the capacity of a lightpath). 
Simulations were made on a computer with a 1.6 GHz Intel Centrino processor and 512 MB 
of RAM memory, and ILOG CPLEX 10.0 was used to solve the MILP formulations.  
 

 Five-node network Six-node network 

 
Congestion Execution Time 

(s) 
Congestion Execution Time 

(s) 

MILP 0.5 15.88 0.7 38060.66 

SP-MILP 0.5 1.86 0.7 775.39 

C-GALD 0.5 0.01 0.7 1.39 

Table 1. Comparison of the congestion of the virtual topologies and the corresponding 
execution time with the MILP formulations and C-GALD 
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The results show that all the methods achieve the same results in terms of congestion but C-
GALD is the fastest method. It has a computing time which is 180 and 550 times lower than 
that of SP-MILP in the networks with five and six nodes, respectively. Then, if a network 
with seven nodes is used, the MILP formulations are unable to find the optimal solution in 
less than a week using the computer described above. The problem with the MILP 
formulations is that realistic wide area networks usually have more than seven nodes; 
hence, the MILP formulations become computationally intractable. On the contrary, C-
GALD designs a logical topology in a relatively short period of time and has the advantage 
of always having a suboptimal solution during the evolution process, thus, this solution can 
be utilized (if necessary) in a reconfigurable WRON. 

In order to evaluate the performance of the different versions of GALD, a simulation study 
was developed in a simulator based on OMNeT++ using the 14-node NSFNet (Ghose et al., 
2005) as network topology and assuming that cables consisted of two unidirectional fibers 
(one for each direction). The capacity of a wavelength was set to 10 Gbps and the traffic load 
was normalized by the lightpath capacity. Each node is equipped with five transmitters and 
five receivers and three wavelength per fibre. Although GALD can be used in networks 
with or without wavelength converters, we assumed that there were no wavelength 
converters in the network. The performance achieved by the different versions of GALD is 
compared with HLDA (Ramaswami & Sivarajan, 1996) as it designs the logical topology 
with the aim of minimizing network congestion, and it takes into account both the traffic 
matrix and the availability of physical resources, like GALD does. 

In Fig. 6 we compare the congestion obtained when using HLDA (Ramaswami & Sivarajan, 
1996) and the tree versions of GALD to optimize the network capacity: C-GALD, F-GALD 
and CF-GALD. In this last version of GALD, the probability of selecting congestion as 
fitness function in each generation is set to 0.8, so the probability of choosing fairness is 0.2. 
We employed uniformly distributed traffic matrixes with different values of the mean traffic 
load, the creation of 1,000 generations (which takes less than a minute) was selected as the 
stopping criterion for the three versions of GALD, and the population size was set to two 
and the descendant size to 12. The corresponding values of fairness are represented in Fig. 7. 
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Fig. 6. Congestion value of the logical topologies designed by using HLDA, C-GALD. 
F-GALD and CF-GALD. 
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Fig. 7. Fairness of the logical topologies designed by using HLDA, HLDA, C-GALD. 
F-GALD and CF-GALD . 

Fig. 6 show that the congestion of the virtual topologies designed by the four methods 
grows as the traffic load increases. However, GALD methods always obtain virtual 
topologies with lower congestion (Fig. 7) and higher fairness (Fig. 8) than those designed 
with HLDA. In this way, when the mean traffic load is over the 11% of the capacity of a 
lightpath, the virtual topologies designed by HLDA show a congestion higher than the 
lightpath capacity and this will cause packet losses. Nevertheless, C-GALD supports traffic 
loads of up to 0.15 without exceeding the lightpath capacity. Then, the virtual topologies 
designed by F-GALD, i.e., the version to increase the fairness of the virtual topologies, are 
the ones that present a higher value of Jain index. Finally, when using the multipurpose 
version, CF-GALD, there is a trade-off between congestion and fairness, and although the 
resulting congestion is a little higher than the one achieved with C-GALD, the fairness is 
better than that obtained with C-GALD. 

 
Fig. 8. Mean end-to-end delay of the logical topologies designed by using MLDA, 
MD-GALD and MxD-GALD. The creation of 500 individuals was the stopping criterion for 
GALD methods. 



 
Real-World Applications of Genetic Algorithms 

 

332 

Comparing the performance of the versions of GALD to optimize the delay in the same 
network conditions than the previous study, in Fig. 8, the mean end-to-end delays of the 
logical topologies obtained with MD-GALD and MxD-GALD are compared with those 
achieved with MLDA (Ramaswami & Sivarajan, 1996) (an algorithm to design virtual 
topologies with the objective of minimize the end-to-end delay). The corresponding values 
of end-to-end delay of the most delayed traffic flow are represented in Fig. 9.  

 
Fig. 9. Average delay of the most delayed traffic flow in the logical topologies designed by 
MLDA MLDA, MD-GALD and MxD-GALD. The creation of 500 individuals was the 
stopping criterion for GALD methods. 

As shown in Fig. 8, the mean end-to-end delay suffered by the packets in the logical 
topology designed by all the algorithms has almost the same value for different node-to-
node traffic loads because the main component of this delay is due to propagation rather 
than to processing delays. However, MD-GALD designs virtual topologies that have 10% 
less average delay than those obtained with MLDA. Moreover, although MxD-GALD is not 
designed to minimize the average end-to-end delay, it achieves almost the same values than 
MLDA. Finally, using the network configuration detailed above, the virtual topologies 
designed by MLDA do not support traffic loads higher than 0.06 (and so the results are not 
plotted in the figures), while the virtual topologies designed by MD-GALD and MxD-GALD 
support traffic loads higher than 0.08. 

Regarding the average end-to-end delay of the most delayed flow (Fig. 9), both MD-GALD 
and MxD-GALD design virtual topologies with a significant reduction of this parameter 
when compared with the one produced by MLDA. In particular, MxD-GALD, which is the 
most effective algorithm when minimizing this parameter, obtains around 30% reduction 
when compared to MLDA.  

Finally, the advantages of using the multi-objective versions of GALD, mainly PDC-GAPD 
(i.e., the one with Pareto optimality), will be studied. In Fig. 10 it is shown the results of the 
virtual topologies obtained by PDC-GALD, DC-GALD, C-GALD, MD-GALD and MLDA 
assuming a traffic matrix with uniform load of 0.07 between each pair of nodes. Each virtual 
topology is plotted in terms of its congestion and its mean end-to-end delay. For the genetic 
algorithms the creation of 1,000,000 individuals was set as the stopping criterion, except for 
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PDC-GALD. For PDC-GALD we show the results of the initial population (two individuals), 
the results when 1,000 individuals have been created, and the results when 1,000,000 
individuals have been generated 

 
Fig. 10. Mean end-to-end delay and congestion of the logical topologies designed by 
PDC-GALD, DC-GALD, C-GALD, MD-GALD and MLDA 

The first advantage of the method that uses the Pareto optimality in combination with 
genetic algorithms is that it provides a set of possible virtual topologies (an estimate of the 
Pareto optimal set) while the other methods only design one (the best topology found until 
that moment according to the optimization target). This feature of PDC-GALD is very 
attractive in reconfigurable WRONs, since the network operator can select the virtual 
topology that better adapts to current network.  

Since the first individual of the initial population of PDC-GALD is based on MLDA, 
obviously PDC-GALD always improves or at least obtains equal results than that algorithm. 
Moreover, as the number of individuals created increases, the virtual topologies designed 
by PDC-GALD improve, leading to lower values of congestion and delay. In particular, the 
virtual topologies found after producing 1,000,000 individuals, do not only get lower values 
of either congestion or end-to-end delay than the other methods, but they even improve 
both values, so that PDC-GALD is a very effective method. 

Finally, in Fig. 11 and Fig. 12 the congestion and the mean end-to-end delay obtained are 
compared, respectively, for different traffic loads (randomly generated according to a 
uniform distribution) for each source-destination pair in the NSFNet with the same 
configuration than that used in the studies of C-GALD and MD-GALD. The solutions shown 
for PDC-GALD, are those ones presenting the lowest end-to-end delay (therefore, with the 
highest congestion) and the ones showing the lowest congestion (hence, with the highest 
end-to-end delay). The results of the other methods are not shown in order to simplify the 
figure, but they again got worse results than PDC-GALD.  

Fig. 11 and Fig. 12 show that the virtual topologies with lower value of congestion designed 
by PDC-GALD present a value of this parameter 20% lower than that obtained by the classic 
multi-objective method, while the end-to-end delay is almost the same for all traffic loads. 
On the other hand, the solutions with the lowest delay designed by PDC-GALD achieve a 
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reduction of up to 10% in the mean end-to-end delay while the congestion value of this 
solution is almost the same than the solution found by DC-GALD. Moreover, PDC-GALD 
designs other logical topologies with congestions and delays between those values.  

Summing up, in multi-objective problems, like the one shown in this book chapter, the 
combination of Pareto optimality with genetic algorithms can give advantages as it does not 
only provide a set of solution, but the solutions found by it can be better than those obtained 
with a classic multi-objective genetic algorithm. 

 
Fig. 11. Congestion of the logical topologies designed by PDC-GALD and DC-GALD 

 
Fig. 12. Mean end-to-end delay of the logical topologies designed by PDC-GALD and 
DC-GALD 

5.4 Genetic algorithms to provision the network and design virtual topologies 

In this section, we describe GAPDELT (Genetic Algorithm to Provision the network and to 
DEsign the Logical Topology) (Durán et al. 2007), a multipurpose method based on the 
combination of Pareto optimality with genetic algorithms to provision the network and 
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design the virtual topology using the congestion, the number of transmitters/receivers and 
the number of wavelengths as optimization criteria. 

5.4.1 Chromosome encoding and translation 

Each chromosome in GAPDELT is composed of a set of N(N−1) genes, where N is the 
number of nodes in the network. Each gene is a real number between zero and one and is 
used to determine how many lightpaths will be established between a pair of nodes. For 
instance, the gene 0 is used to determine the number of lightpaths that will be established 
from node zero to node one (see Fig. 13) and so on. Furthermore, the genetic information is 
used to determine in which order the lightpaths will be established. 

 
Fig. 13. GAPDELT chromosome structure. 

The procedure to translate the genetic information of a chromosome into a network 
provision scheme and a logical topology follows this pseudo-code: 

Step 1. Search for the gene with the highest value in the chromosome. 
Step 2. Try to establish the lightpath represented by the gene. Precalculated shortest paths 

(measured in terms of number of hops in the physical topology) are used for 
routing the lightpaths and the first-fit heuristic (Zang et al., 1996) is employed to 
assign a wavelength to each lightpath.  

Step 2.a: If the lightpath cannot be established due to lack of free resources, the value of 
the gene is set to zero.   

Step 2.b: If the lightpath is established, a fixed quantity, δ, will be subtracted from the 
gene.  Moreover, a transmitter is assigned to the source node and a receiver to 
the destination node. 

Step 3. Repeat the process from Step 1 as long as there are free transmitters and receivers 
and as long as there is any gene in the chromosome with value higher than zero. 
(Thus, note that δ determines the maximum number of lightpaths allowed between 
a source-destination pair). Otherwise, the translation process finishes, and the 
resulting resource distribution and the logical topology are the solution represented 
by the chromosome.  

Moreover another version of GAPDELT is presented to solve both the problem of network 
provisioning and virtual topology design but also ensuring that all the lightpaths of the 
virtual topology are protected against network failures. Hence, the optimization objectives 
of P-GAPDELT are also the same ones that GAPDELT but it modifies the step 2 and it does 
not only offer a lightpath but it also reserves a set of resources to establish a backup 
lightpath in case the primary one fails. As it is obvious, the primary and the backup 
lightpath are link disjoint. In order to minimize the resources that will be reserved, P-
GAPDELT uses the technique of backup multiplexing in which the reserved resources for a 
backup lightpath can be also used to provide the redundancy to additional lightpaths if the 
primary lightpaths are link disjoint. 
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5.4.2 Initial population 

GAPDELT uses as initial population three chromosomes that are designed to ensure that 
they show either low congestion or low resource utilization and the rest of individuals of the 
initial population are randomly generated.  

The chromosome of the first individual contains the corresponding values of the traffic 
matrix normalised by the highest value. This individual is inspired in HLDA and has the 
same objective as the one used in GALD methods. The second individual is a chromosome 
in which genes that represent lightpaths between nodes that are adjacent in the physical 
topology are set to δ, and zero otherwise. The third special individual is designed to create a 
Hamiltonian cycle as the logical topology. These two individuals ensure solutions requiring 
few network resources. 

Then, the rest of individuals are randomly generated setting each value of a gene to a 
number randomly generated between zero and one. However another modification has 
been done to find the optimal solutions with different number of resources quickly. The 
interval between zero and one is divided into σ intervals (parameter defined by the user) 

and as many chromosomes as desired are generated in the interval 
1

,
r r
σ σ

+ 
  

. considering 

( )0,1, , 1r σ= − . 

5.4.3 Genetic evolution and operators 

In GAPDELT, following the principles of GAs, an initial population of individuals of size P 
is randomly created. The selection of the two individuals that will act as parents in each 
crossover process is made randomly among the individuals in the population. In single-
objective problems the roulette wheel method according to the individual fitness is utilized 
as selection process but in GAPDELT, every individual in the population belongs to the 
Pareto optimal set. The crossover operator is applied to pairs of individuals to interchange a 
part of their genetic material. It uses the same method than GALD: the chromosomes are 
divided into two parts by a gene randomly selected (the same in the two chromosome) and 
the second parts of the chromosomes are interchanged to create two new individuals. The 
process of crossover is repeated until the descendant population reaches a size of DP that 
will be proportional to the size of the population (DP = α·P). When the process of creating 
the descendant population is completed, the mutation operator is applied to the individuals 
in the new population. The mutation operator goes through the genes of the new 
individuals and it changes the value of the genes randomly according to a probability 
pmutation.  

Each time that an individual (or virtual topology) is generated, it is necessary to calculate its 
goodness according to the fitness functions. Then, the solutions that belong to the Pareto 
optimal set among the individuals from the descendant and the parent populations will 
form the parent population for the next generation. When using this technique, solutions 
which exhibit good performance in many, if not all, objectives are more likely to be 
produced. Note that the size of the population P, and so DP, will dynamically change 
depending on the number of individuals that belong to the Pareto optimal set. The evolution 
process is repeated a number of iterations or until another criterion is met.  
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A new operator, called vitalization, is designed for GAPDELT. The vitalization tries to 
increase the health of the individuals similarly as it is done when an individual receives a 
vitamin. The vitalization is only applied in certain generations, e.g., when the number of 
individuals generated reaches the user-defined values. When the vitalization is applied, the 
size of the population is set to three times the current size. In the first third of the new 
population the current population is copied. Then in the second third, the current 
population is copied but a certain value between zero and one, called vitamin, is subtracted 
from the genes. If the result is lower than zero, the value of the gene is set to zero. This set of 
chromosomes can increase the health in terms of resources used (less resources). The third 
part of the new population is composed by the current population but adding the value 
vitamin to the genes of the current population. If this leads to a gene with a value greater 
than one, the value of that gene is set to one. The objective of this third part of population is 
to build solutions with many lightpaths established and so the congestion value of the 
virtual topologies should decrease. Then, the health of all the population is calculated and 
the individuals belonging to the Pareto optimal set are considered to be the parents for the 
new generation. 

5.4.4 Fitness function 

Each time that an individual is generated and its genetic information is translated into a 
network provision scheme and a logical topology, its fitness has to be calculated in terms of 
congestion and number of resources required (transmitters/receivers and wavelengths in 
operation). To estimate the network congestion, the traffic is routed in the logical topology 
following the shortest paths measured in number of hops, similar to IP routing protocols. 
Only those solutions with congestion lower than the lightpath capacity are considered as 
feasible solutions. 

5.4.5 Results obtained with the methods 

In order to evaluate and measure the accuracy of both GAPDELT and P-GAPDELT, a 
simulation study is done using the NSFNet as the physical topology, like in the simulations 
done to evaluate the GALD method. The maximum number of wavelengths was set to eight 
and the maximum number of transmitters and receivers to 182. The maximum number of 
lightpaths between two nodes was fixed to four.  

The number of individuals in the initial population was set to 13, three of them were 
calculated as explained in Section 5.5.2, and the other ones were randomly generated using σ 
= 9 and a chromosome per interval. The size of the descendant population was two times 
the size of the parent population. The vitalization was applied each time that 500 
individuals were generated and the value of the vitamin was set to 0.25. Other 
configurations for each parameter were analysed, but we finally adopted this one since it led 
to the best results.  

As happens with PCR-GALD, GAPDELT provides as solutions all the dominant individuals in 
the current population, i.e., an estimate of the Pareto optimal set. However, in this case, the 
solutions can be represented by the group of three parameters: congestion, number of 
wavelengths and number of transmitters and receivers used. Hence, in Fig. 14 a three-
dimensional colour graph has been used to show the fitness of the set of logical topologies 
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found by the algorithm. Each point in the graph is a solution represented in terms of its 
number of wavelength, transmitters and receivers in operation and its congestion. In order to 
show this qualitative result, a random traffic matrix was used in which the traffic demands 
between a pair of nodes was randomly generated using an uniform distribution with load of 
0.1, i.e., 1 Gbps. The creation of one million of individuals was set as stopping criterion. 

 
Fig. 14. Fitness of the solutions found by GAPDELT 

As it is shown in Fig. 14, GAPDELT obtains in a single execution a high number of feasible 
solutions. In contrast, if traditional virtual topology design methods were used, it would 
have been necessary to repeat the execution of these methods a number of times varying the 
number of transmitters, receivers and wavelengths and also varying the distribution of the 
transmitters and receivers among the nodes to obtain the same result that GAPDELT can 
obtain in only one execution.  

Moreover, each solution of GAPDELT brings the following information: the number of 
transmitters in each node of the network (it can be heterogeneously distributed), the number 
of receivers in each node of the network (it can also be heterogeneously distributed), the 
number of wavelengths used in the network, the set of lightpaths that should be established 
in the network, the route and the wavelength that each lightpath has to use and the traffic 
routing over the virtual topology.  

Regarding the results illustrated in Fig. 14, obviously, as the number of resources employed 
to design the virtual topology increases, the congestion obtained is generally lower. 
However, as shown by the grated areas in the figure, there are regions where increasing the 
number of resources does not lead to reductions in congestion, i.e., some resources are 
wasted in these areas with the corresponding increase in the cost of the network. For 
instance, in some cases, if the number of wavelengths is increased, but it is not accompanied 
by an increase on the number of transmitters/receivers, there is no reduction in congestion. 
GAPDELT detects these situations, leading to solutions with a balanced use of 
transmitters/receivers and wavelengths, hence optimizing the utilization of resources and 
improving the cost efficiency of the network.  

Fig. 15 shows the number of solutions found, in average, by GAPDELT and P-GAPDELT in 
a single execution depending on the traffic load. Each value shown has been obtained using 
250 traffic matrixes where each value of the matrix has been randomly selected following a 
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uniform distribution with the mean of the traffic load shown in the figures. Results are 
shown with 95% confidence intervals. The stopping criterion in GAPDELT was set to the 
creation of 100,000 individual during the evolution process. As can be seen in the figure, as 
the traffic load increases, the number of solutions found by both version of GAPDELT 
decreases because there are less solutions with a congestion value under the maximum 
lightpath capacity. Moreover, GAPDELT achieves to design more virtual topologies than 
P-GAPDELT as it can use more resources to establish primary lightpaths. 

 
Fig. 15. Number of solutions found, in average, by GAPDELT and P-GALDELT in a single 
execution 

Fig. 16 compares the congestion obtained by GAPDELT, P-GAPDELT, HLDA (when each 
node is equipped with 13 transmitters and 13 receivers) and HLDA again but using the 
resource distribution provided by GAPDELT. As GAPDELT methods design solutions with 
different number of wavelengths used, only the solutions which use eight wavelengths are 
shown in the figure, and from these solutions, two of them are selected to be plotted: the one 
with lowest congestion and the one with lowest number of transmitters and receivers. Each 
value shown has been obtained using 250 traffic matrixes where each value of the matrix has 
been randomly selected following a uniform distribution with the mean of the traffic load 
shown in the figures. Results are shown with 95% confidence intervals. The stopping 
criterion in GAPDELT was set to the creation of 100,000 individual during the evolution 
process.  

The objective of this comparison is to study not only the performance of GAPDELT as a 
method to design the virtual topology but also to analyse the advantages obtained as a 
method to solve the network provisioning problem. For higher loads, HLDA cannot find a 
solution with a value of congestion lower or equal than one (i.e., without exceeding the 
lightpath capacity) and these are not plotted in the figure. 

Firstly, it is possible to see in Fig. 16 that GAPDELT can design virtual topologies for higher 
traffic loads when HLDA cannot, even when using the resource distribution found by 
GAPDELT. Moreover, GAPDELT does not only design a set of solutions per execution 
instead of only one, but it also designs virtual topologies that can reduce in  50% the value of 
congestion when compared with HLDA. Moreover, the results from Fig. 16 show that the 
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problem of network provisioning and the design of logical topologies are strongly related. 
In this sense, in Fig. 16 it is shown that when HLDA uses the resource distributions obtained 
by GAPDELT, it designs virtual topologies with lower congestion than if a uniform 
distribution of resources among the network nodes is used. Hence, GAPDELT also offers 
advantages if it is only used to solve the problem of network provisioning. 

 
Fig. 16. Comparison of the congestion of the virtual topologies designed by GAPDELT and 
P-GAPDELT with HLDA for different network loads 

As it is obvious, the congestion of the solutions obtained by GAPDELT are lower than those 
of P-GAPDELT because the former does not need to reserve resources for backup lightpaths 
and it can establish a higher number of primary lightpaths reducing the congestion but 
without providing failure protection. However, an interesting result to show the efficiency 
of the GAPDELT family is that P-GAPDELT can also reduce the congestion obtained by 
HLDA when the latter is a method to design virtual topologies reducing the congestion and 
it does offer failure protection. 

6. Conclusion  

In this chapter, the optimization problems of designing a semi-static wavelength-routed 
optical network have been described. In this kind of optical networks two problems should 
be solved: the network provisioning and the virtual topology design. A set of genetic 
algorithms proposed by the Optical Communications Group at the University of Valladolid 
to solve these two problem problems have been presented. In this way, GALD methods 
were proposed to design the virtual topology while GAPDELT methods were created to 
solve both the network provisioning and the virtual topology design problems. The 
chromosome structures, their translation, the optimization goals and the genetic operators 
utilized by each method have been described. 

A number of versions of GALD have been developed, each one to optimize a network 
parameter related with the network capacity (C-GALD, F-GALD) or the delay (MD-GALD, 
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MxD-GALD). Moreover, a multi-objective method, PCR-GALD, based on the combination 
of genetic algorithms with Pareto optimality has also been presented. The results from a 
simulation study show that GALD methods are very good techniques to design virtual 
topologies as they obtain virtual topologies with better performance than those designed by 
other methods from the literature. 

GAPDELT is a multi-objective algorithm to design both the network provisioning and the 
virtual topology that minimises the congestion and the number of required resources (in 
terms of number of transmitters, receivers and wavelengths) and thus the network cost. The 
method is based on the combination of genetic algorithms and Pareto optimality. Moreover, 
another version of the method called P-GAPDELT has also been presented to solve the same 
problems than GAPDELT, but reserving resources to establish backup lightpaths to replace 
the primary ones when facing network failures. By means of a simulation study, we have 
shown that both GAPDELT and P-GAPDELT provide a set of solutions, the set of optimal or 
near-optimal solutions, in only one execution. Moreover, the simulation study done shows 
that the performance of the solutions found by GAPDELT methods outperform the ones 
obtained with other methods previously proposed in the literature.  
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1. Introduction 

Surrogate-based optimization (Queipo et al. 2005, Simpson et al. 2008) represents a class of 
optimization methodologies that make use of surrogate modeling techniques to quickly find 
the local or global optima. It provides us a novel optimization framework in which the 
conventional optimization algorithms, e.g. gradient-based or evolutionary algorithms are 
used for sub-optimization(s). Surrogate modeling techniques are of particular interest for 
engineering design when high-fidelity, thus expensive analysis codes (e.g. Computation 
Fluid Dynamics (CFD) or Computational Structural Dynamics (CSD)) are used. They can be 
used to greatly improve the design efficiency and be very helpful in finding global optima, 
filtering numerical noise, realizing parallel design optimization and integrating simulation 
codes of different disciplines into a process chain. Here the term “surrogate model” has the 
same meaning as “response surface model”, “metamodel”, “approximation model”, 
“emulator” etc. This chapter aims to give an overview of existing surrogate modeling 
techniques and issues about how to use them for optimization.  

2. Overview of surrogate modeling techniques 

For optimization problems, surrogate models can be regarded as approximation models for 
the cost function (s) and state function (s), which are built from sampled data obtained by 
randomly probing the design space (called sampling via Design of Experiment (DoE)). Once 
the surrogate models are built, an optimization algorithm such as Genetic Algorithms (GA) 
can be used to search the new design (based on the surrogate models) that is most likely to 
be the optimum. Since the prediction with a surrogate model is generally much more 
efficient than that with a numerical analysis code, the computational cost associated with 
the search based on the surrogate models is generally negligible.  

Surrogate modeling is referred to as a technique that makes use of the sampled data 
(observed by running the computer code) to build surrogate models, which are sufficient to 
predict the output of an expensive computer code at untried points in the design space. 
Thus, how to choose sample points, how to build surrogate models, and how to evaluate the 
accuracy of surrogate models are key issues for surrogate modeling.    

2.1 Design of experiments  

To build a surrogate model, DoE methods are usually used to determine the locations of 
sample points in the design space. DoE is a procedure with the general goal of maximizing 
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the amount of information gained form a limited number of sample points (Giunta et al., 
2001). Currently, there are different DoE methods which can be classified into two 
categories: “classic” DoE methods and “modern” DoE methods. The classic DoE methods, 
such as full-factorial design, central composite design (CCD), Box-Behnken and D-Optimal 
Design (DOD), were developed for the arrangement of laboratory experiments, with the 
consideration of reducing the effect of random error. In contrast, the modern DoE methods 
such as Latin Hypercube Sampling (LHS), Orthogonal Array Design (OAD) and Uniform 
Design (UD) (Fang et al., 2000) were developed for deterministic computer experiments 
without the random error as arises in laboratory experiments. An overview of the classic 
and modern DoE methods was presented by Giunta et al. (2001). A more detailed 
description of existing DoE methods is beyond the scope of this chapter. 

The schematics of 40 sample points selected by LHS and UD for a two-dimensional problem 
are sketched in Figure 1.  
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Fig. 1. Schematics of 40 sample points selected by Design of Experiments for a two-
dimensional problem (left: Latin Hypercube Sampling; right: Uniform Design). 

2.2 Surrogate models 

There are a number of surrogate models available in the literatures. Here we limit our 
discussion to three popular techniques such as RSM (polynomial Response Surface Model), 
Kriging, RBFs (Radial Basis Functions).  

For an m-dimensional problem, suppose we are concerned with the prediction of the output 
of a high-fidelity, thus expensive computer code, which is correspondent to an unknown 
function m:y → .  By running the computer code, y  is observed at n  sites (determined by 
DoE)  

 ( )(1) T
1[ ,..., ] , { ,.., }n n m m

mx x×= ∈ = ∈S x x x   (1) 

with the corresponding responses  

 (1) ( ) (1) ( )T T
S [ ,..., ] [ ( ),..., ( )]n n ny y y y= = ∈y x x   (2) 
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The pair ( S , Sy ) denotes the sampled data sets in the vector space. 

With the above descriptions and assumptions, our objective here is to build a surrogate 
model for predicting the output of the computer code for any untried site x  (that is, to 
estimate ( )y x ) based on the sampled date sets ( S , Sy ), in an attempt to achieve the desired 
accuracy with the least possible number of sample points.  

2.2.1 Quadratic response surface method 

Here we use “RSM” to denote a polynomial approximation model in which the sampled 
data is fitted by a least-square regression technique. In RSM-based optimization 
applications, the “quadratic” polynomial model usually provides the best compromise 
between the modeling accuracy and computational expense, when compared with the linear 
or higher order polynomial models. An advantage of RSM is that it can smooth out the 
various scales of numerical noise in the data while captures the global trend of the variation, 
which makes it very robust and thus well suited for optimization problems in engineering 
design.  

The true quadratic RSM can be written in the following form: 

 ( ) ( )ˆ , my y ε= + ∈x x x  , (3) 

where ( )ŷ x  is the quadratic polynomial approximation and ε  is the random error which is 
assumed to be normally distributed with mean zero and variance of 2σ . The error iε  at each 
observation is supposed to be independent and identically distributed. The quadratic RSM 
predictor ( )ŷ x  can be defined as: 

 ( ) 2
0

1 1 1
ˆ

m m m m

i i ii i ij i j
i i i j i

y x x x xβ β β β
= = = ≥

= + + +  x ,  (4) 

where 0β , iβ , iiβ  and ijβ  are unknown coefficients to be determined. Since there are 
totally ( 1)( 2) / 2p m m= + +  unknown coefficients in Eq.(4), building a quadratic RSM with 
m variables requires at least p  sample points. Let p∈β   be the column vector contains 
these p  unknown coefficients.  The least square estimator of β  is 

 T 1 T( ) S
−=β U U U y , (5) 

 

where  

 
( ) ( )

( ) ( )

2 2(1) (1) (1) (1) (1)(1) (1) (1)
1 1 2 1 1
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1 1 2 1 2

1
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x x x x x x x x

−
×

−

 
 
 = ∈ 
 
  

  

          

  

 (6) 

After the unknown coefficients in β  are determined, the approximated response ŷ  at any 
untried x  can be efficiently predicted by Eq. (4). 
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2.2.2 Kriging model 

Different from RSM, Kriging (Krige, 1951) is an interpolating method which features the 
observed data at all sample points. Kriging provides a statistic prediction of an unknown 
function by minimizing its Mean Squared Error (MSE). It can be equivalent to any order of 
polynomials and is thus well suited for a highly-nonlinear function with multi extremes. For the 
derivation of Kriging (Sacks et al., 1989), the output of a deterministic computer experiment is 
treated as a realization of a random function (or stochastic process), which is defined as the sum 
of a global trend function T ( )f x β  and a Gaussian random function ( )Z x  as following 

  T( ) ( ) ( ), my Z= + ∈x f x β x x  ,   (7) 

where T
0 1( ) [ ( ),.., ( )] p

pf f −= ∈f x x x   is defined with a set of the regression basis functions 
and T

0 1[ ,.., ] p
pβ β −= ∈β   denotes the vector of the corresponding coefficients. In general, 

T ( )f x β  is taken as either a constant or low-order polynomials. Practice suggests that the 
constant trend function is sufficient for most of the problems. Thus, T ( )f x β  is taken as a 
constant 0β  in the text hereafter. In Eq.(7), ( )Z ⋅  denotes a stationary random process with  
zero mean, variance 2σ  and nonzero covariance of 

 2[ ( ), ( )] ( , )Cov Z Z Rσ′ ′=x x x x .  (8) 

Here ( , )R ′x x  is the correlation function which is only dependent on the Euclidean distance 
between any two sites x  and ′x  in the design space. In this study, a Gaussian exponential 
correlation function is adopted, and it is of the form 

 
1

( , ) exp[ | | ] ,1 2k

m
p

k k k k
k

R x x pθ
=

′ ′= − − < ≤x x , (9) 

where T
1 2[ , ,..., ]mθ θ θ=θ  and T

1 2[ , ,..., ]mp p p=p  denote the vectors of the unknown model 
parameters (hyper parameters) to be tuned. The schematics of a Gaussian exponential 
correlation function for one-dimensional problem is sketched in Figure 2. 
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Fig. 2. Schematics of Gaussian exponential correlation function for different hyper 
parameters (left: varying θ  with a fixed p ; right: varying p  with a fixed θ  )   
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From the derivation by Sacks et al. (1989) the Kriging predictor ( )ŷ x  for any untried x  can 
be written as 

 T 1
0 0ˆ( ) ( ) ( )Sy β β−= + −x r x R y 1 ,  (10) 

where the generalized least square estimation of 0β  is 

 T 1 1 T 1
0 ( ) Sβ − − −= 1 R 1 1 R y , (11)  

and n∈1   is a vector filled with ones, and , R r  are the correlation matrix and the 
correlation vector, respectively. and R r are defined as 

 

(1) (1) (1) (2) (1) ( ) (1)

(2) (1) (2) (2) (2) ( ) (2)

( ) (1) ( ) (2) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ),  

( , ) ( , ) ( , ) ( , )

n

n
n n n

n n n n n

R R R R

R R R R

R R R R

×

   
   
   = ∈ = ∈   
   
   
   

x x x x x x x x

x x x x x x x x
R r

x x x x x x x x



  
    



, (12) 

where ( )( )( , )jiR x x  denotes the correlation between any two observed points ( )ix and ( )jx  ; 
( )( , )iR x x  denotes the correlation between the i-th observed point ( )ix  and the untried point 

x .  

A unique feature of Kriging model is that it provides an uncertainty estimation (or MSE) for 
the prediction, which is very useful for sample-points refinement. It is of the form 

 2 2 T 1 T 1 2 T 1ˆ ( ) [1.0 ( 1) / ]s σ − − −= − + −x r R r r R 1 1 R 1 . (13) 

Assuming that the sampled data are distributed according to a Gaussian process, the 
responses at sampling sites are considered to be correlated random functions with the 
corresponding likelihood function given by 

 
T 1

2 S 0 S 0
0 22

( ) ( )1 1( , , , ) exp
22 ( )n

L
β ββ σ

σπ σ

− − −= −  
 

y 1 R y 1θ p
R

. (14) 

The optimal estimation of 0β  and the process variance  

 
T 1 1 T 1

0 S

2 T 1
0 S 0 S 0

( , ) ( )
1( , , ) ( ) ( )
n

β

σ β β β

− − −

−

=

= − −

θ p 1 R 1 1 R y

θ p y 1 R y 1
  (15)  

are obtained analytically, yet depends on the remaining hyper-parameters T
1 2[ , ,..., ]mθ θ θ=θ  

and T
1 2[ , ,..., ]mp p p=p . Substituting it into the associated Eq. (14) and taking the logarithm, 

we are left with maximizing  
 

 . 2MLE( , ) ln ( ) ln ( )n σ= − −θ p θ R θ .,   (16)  
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which can be solved by a numerical optimization algorithm such as GA. The 
hyperparamters tuning strategies are discussed by Toal et al. (2008). Note that the above 
Kriging formulation can be extended by including gradient information obtained by Adjoint 
method (Han et al. 2009, Laurenceau et al. 2008) or lower-fidelity data by lower-fidelity 
analysis code (Han et al. 2010, Forrester et al. 2007). 

2.2.3 Radial basis functions 

In additional to Kriging, RBFs model (Hardy, 1971) is known as an alternative interpolation 
method for surrogate modeling. For the RBFs approach by Powell (1987), the approximation 
of the unknown function ( )y x  at an untried x  is formally defined as the linear combination 
of the radial basis functions and a global trend function as 

  
1

ˆ( ) ( ) ( )
n

i
i

y Pω ϕ
=

= +x x x ,  (17) 

where iω  are the i-th unknown weight coefficient, ( )( ) ( )iϕ ϕ= −x x x  are the basis functions 
that depend on the Euclidean distance between the observed point ( )ix  and the untried 
point x  (similar to the correlation function of kriging model); ( )P x  is the global trend 
function which is taken as a constant 0β  here. To ensure the function values at observed 
points are reproduced by the RBFs predictor, the flowing constraints should be satisfied:  

 
( ) ( )ˆ( ) , 1,..,i iy y i n= =x .  (18) 

Then the additional constraints for ( )P x  should be imposed as 

 
0

0
n

i
i

ω
=

= .  (19) 

Solving the linear equations formed by Eq. (18) and Eq. (19) for iω  and 0β , and substituting 
into Eq.(17) yields the RBFs predictor as 

 T 1
0 S 0ˆ( ) ( ) ( )y β β−= + −x φ x Ψ y 1 . (20) 

Where T 1 1 T 1
0 S( ) ( )β − − −=θ 1 Ψ 1 1 Ψ y  and Ψ , ( )φ x  are defined as 

 ( )( ) ( ): [ ( )] ,  ( ) : [ ( )]ji in n n
ij iϕ ϕ×= − ∈ = − ∈Ψ x x φ x x x  .  (21) 

When the above RBFs predictor is compared with the Kriging predictor (see Eq. (10)), one 
can observe that they are essentially similar, only with the basis-function matrix Ψ  (also 
called Gram matrix) and the basis function vector ( )φ x  being different from the correlation 
matrix R and the correlation vector ( )r x  of the Kriging predictor, respectively. In addition, 
RBFs differs from Kriging at the following two aspects: 1) RBFs doesn’t provide the 
uncertainty estimation of the prediction; 2) The model parameters can’t be tuned by MLE 
like Kriging. Generally, Kriging can be regarded as a particular form of RBFs. 
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To build a RBFs model, one needs to prescribe the type of basis functions that only depends 
on the Euclidean distance r ′= −x x  between any two sites x  and ′x . Compared to the 
correlation function used for a Kriging model, more choices are available for a RBFs model, 
which are partially listed in Table 1. 
 

Basis  functions Formulations 

Gaussian (GAUSS) 
2 2/ 2( ) rr e σφ −= (e.g. 2 1σ =  ) 

Power function (POW) ( ) ,1 3r r βφ β= ≤ ≤ (e.g. 1.8β =  ) 

Thin Plate Spline (TPS) 2( ) ln( )r r rφ =  

Hardy’s Multiquadric (HMQ) 2( ) 1r rφ = +  

Hardy’s Inverse Multiquadric (HIMQ) 2( ) 1/ 1r rφ = +  

Table 1. Basis functions for RBFs surrogate model 

All the basis functions listed in Table 1 can be classified into two categories: decaying 
functions (such as GAUSS and HIMQ) and growing functions (POW, TPS and HMQ). The 
decaying functions can yield positive definite matrix Ψ , which allows for the use of 
Cholesky decomposition for its inversion; the growing functions generally result in a non-
positive definite matrix Ψ  and thus LU decomposition is usually used alternatively. The 
schematics of the basis functions for one-dimensional problem is sketched in Figure 3. 
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Fig. 3. Schematics of basis functions for Radial Basis Functions (left: decaying functions; 
right: growing functions).   

2.2.4 The big (ger) picture 

In addition to what we mentioned above, there are also a few surrogate models available in 
the literatures, such as Artificial Neutral Network (ANN) (Elanayar et al. 1994, Park et al. 
1991), Multiple Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) 
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(Smola & Schoelkopf 2004). Although these methods are coming from different research 
communities, the idea is similar when using them for function prediction in surrogate 
modeling. They are not described in detail here due to the limited space. The readers are 
referred to read the paper by Wang & Shan (2007) and the books written by Keane et al. (2005) 
and by Forrester et al. (2008) for more description about surrogate modeling techniques. 

2.3 Evaluation of approximation models 

An important issue for the surrogate modeling is how to estimate the error of the 
approximation models. Only when the surrogate model with sufficient accuracy is built can 
the reliable optimum be obtained. Here we use two variables  ( e  and eσ ) to evaluate the 
error of the approximation models at test points, which are also chosen by DoE method. The 
average relative error is 

 
( ) ( )

( ) ( )
( )

1

ˆ1 ,     
tn i i

i i t t
i

t i t

y y
e e e

n y=

−
= = ,   (22) 

where tn  is number of the test points; ( )i
ty  and ( )ˆ i

ty  are the true value and predicted value 
corresponding to the i-th test point, respectively. The root mean squared error is defined by 

 ( ) 2

1
( )

tn
i

e t
i

e nσ
=

=   . (23) 

2.4 Framework of building surrogate models 

A Generic framework of building a surrogate model is sketched in Figure 4. Note that the 
initial surrogate model can be evaluated by Eqs. (22) and (23) and a branch for resampling is 
denoted by black dashed line in Figure 4. 

3. Use of surrogate models for optimization 

Suppose we are concerned with solving a general optimization problem as 

 
Objective    minimize  y( )
        s.t.    g ( ) 0, 1,...

                  
i c

l u

i n≤ =
≤ ≤

x
x

x x x
 ,  (24) 

where cn  is the number of state functions which is in line with the number of inequality 
constraints (assuming that all the equality constraints have been transformed into inequality 
constraints.); lx  and ux  are the lower and upper bound of design variables, respectively; 
the object function y( )x  and state functions g ( )i x  are evaluated by an expensive analysis 
code. Traditionally, the optimization problem is solved by either a gradient-based algorithm 
or a gradient-free algorithm such as GA. It may become prohibitive due to the large 
computational cost associated running the expensive analysis code. Alternatively, here we 
are concerned with using surrogate modeling techniques to solve the optimization problem, 
in an attempt to dramatically improve the efficiency.  
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Fig. 4. Frameworks of building surrogate models 

3.1 Framework of surrogate-based optimization  

3.1.1 A simple framework 

The basic idea of using surrogate models in optimization can be quite simple. First, the 
surrogate models for the object function(s) and state function(s) with sufficient accuracy are 
built (see Figure 2); second, the optimum is found by an optimizer, with the object 
function(s) or state function(s) evaluated by surrogate models, rather than by the expensive 
analysis code. Since prediction with the surrogate models is much more efficient than that 
by the expensive analysis code, the optimization efficiency can be greatly improved. The 
comparison of the conventional optimization and surrogate-based optimization is sketched 
in Figure 5. In addition to improve optimization efficiency, surrogate models also serve as 
an interface between the analysis code and the optimizer, which makes the establishment of 
an optimization procedure much easier. One of the examples for such a surrogate-based 
optimization framework can be found in paper by Han et al. (2010).  

3.1.2 A bi-level framework 

Although the framework of the surrogate-based optimization sketched in Figure 5. (b) is 
very intuitive and simple, questions may arise: are the surrogate models accurate enough? 
has the true optimum been reached? In fact, the optimum gained by the surrogate models is 
only an approximation to the true optimum (see Figure 5. (a)). One has to refine the 
surrogate models by adding new sample points, which is to be observed by running the 
analysis code. The procedure of augmenting new sample point(s) to the current sampled 
data sets is the so-called “sample-point refinement”. The rules of determining the new 
sample sites towards the true optimum are called “infill criteria”, which will be discussed in 
section 3.2. The flowchart of a surrogate-based optimization with additional process of 
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sample-point refinement is sketched in Figure 6. It can be regarded as a bi-level optimization 
framework, with the process of building and refining the surrogate models (which needs to 
run the expensive analysis code) acting as the main optimization and the process of using 
surrogate models to determine the new sample sites acting as the sub-optimization(s).  

 
Fig. 5. Comparison of frameworks for conventional optimization and surrogate-based 
optimization with a simple framework 
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Fig. 6. Flowchart of the surrogate-based optimization with a bi-level framework (main 
optimization: building and refining the surrogate models which needs to run the expensive 
analysis code; sub-optimization(s): using surrogate models to determine new sample sites) 
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3.2 Infill criteria  

The infill criterion is related to the determination of the new sample sites by solving sub-
optimization problem(s). Three infill criteria are discussed here: Searching Surrogate 
Model(s) (SSM), Expected Improvement (EI) and Lower-Bounding Confidence (LCB). 

3.2.1 Searching surrogate model(s) 

Provided that the initial surrogate models have been built, an optimizer such as GA can be 
used to find the optimum, which in turn can be employed to refine the surrogate models.  

The mathematical model of the sub-optimization for determining the new sample site is of 
the form   

 
ˆObjective    minimize  y( )

ˆ        s.t.    g ( ) 0, 1,
                  

i c

l u

i n≤ =
≤ ≤

x
x

x x x
 ,  (25) 

where ŷ( )x  and ĝ ( )i x  are surrogate models of y( )x  and  g ( )i x , respectively. With the 
optimal design variables optx̂  gained by the surrogate models in hand, one needs to run the 
expensive analysis code to compute the corresponding true function value and compare it 
with what predicted by the surrogate models. If the error between them is blow a threshold, 
the optimization process can be terminated; if not, the new sample point is augmented to the 
sampled data sets and the surrogate models are rebuilt; the process is repeated until the 
optimum solution is approached. 

This criterion applies for all the surrogate models and is very efficient for local exploitation 
of the promising region in the design space.  

3.2.2 Expected improvement  

Surrogate model such as Kriging provides not only an function prediction but also an 
estimation of the mean squared error (MSE). In fact, the prediction by a Kriging model, 
ˆ( )y x , at any point can be regarded as a Gaussian random variable with the mean given by 

the Kriging predictor, and the variance given by the mean squared error, ( )2s x (see section 
2.2.2). Viewed in this way, a probability can be computed that the function value at any 
untried x  would fall below the minimum among the sample points observed so far. Then 
Expected Improvement (EI) function (Jones et al 1998, Jeong et al. 2005) can be calculated to 
account for the improvement of the object function we expect to achieve at any untried x . 
The definition of EI is of the form 

 
min min

min
ˆ ˆ( ) ( )ˆ ˆ ˆ( ( )) + ( )      if   > 0

ˆ ˆ[ ( )] ( ) ( )
ˆ0                                                                                 if   = 0

y y y y
y y s  s

E I s s

s 

φ
    − −

− Φ    =     



x x
x x

x x x   (26)  

where ( )Φ   and ( )φ   are the cumulative distribution function and probability density 
function of a standard normal distribution, respectively. (1) (2) ( )

min ( , ,..., )ny Min y y y=  
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denotes the minimum of the observed data so far. The greater the EI, the more improvement 
we expect to achieve. The point with maximum EI is located by a global optimizer such as 
GA then observed by running the analysis code. For this infill criterion, the constraints can 
be accounted by introducing the probability that the constraints are satisfied. The 
corresponding sub-optimization problem can be modeled as 

 
1

Objective    maximize  [ ( )] [ ( ) 0]

         s.t.                    

cn

i
i

l u

E I P G
=

⋅ ≤

≤ ≤

∏x x

x x x
, (27) 

where [ ( ) 0]iP G ≤x  denotes the probability that i-th constraint may be satisfied and ( )iG x  is 
a random function corresponding to i-th state function ( )ig x . [ ( ) 0] 1iP G ≤ →x  when the 
constraint is satisfied and [ ( ) 0] 0iP G ≤ →x  when the constraint is violated. [ ( ) 0]iP G ≤x  can 
be calculated by  

 
2 20 ˆ ˆ[ ( ) ( )] /2 ( ) ˆ ( )1[ ( ) 0] ( )

ˆˆ ( )( ) 2
i i iG g s i

i i
ii

g
P G e dG

ss π
− −

−∞

 −
≤ = = Φ 

 
 x x x x

x x
xx

  (28) 

where ( )ˆ xis  denotes the estimated standard error corresponding to the surrogate model 
( )ˆ xig .  

The optimum site optx̂  obtained by solving Eq. (27) is observed by running analysis code 
and the new sample point is added to the sampled date sets; the surrogate models are 
rebuilt and the whole process is repeated until the global optimum is approached. 

3.2.3 Lower-bounding confidence (LCB) 

The LCB function is defined as the weighted sum of predicted function value ˆ( )y x  and the 
standard error of the prediction ˆ( )s x . For an optimization problem of finding the minimum 
of the unknown function ( )y x , a simple expression for LCB function is of the form 

 ˆ ˆLCB= ( ) ( )y As−x x ,  (29) 

where A  is a constant which balances the influence of the predicted function and the 
corresponding uncertainty. Best practice suggests 1A =  works well for a number of realistic 
problems. The corresponding sub-optimization problem can be modeled as 

 
ˆ ˆObjective    minimize  ( ) ( )

ˆ         s.t.    ( ) 0, 1,
                   

i c

l u

y As
 g i n

−
≤ =

≤ ≤

x x
x

x x x
 , (30) 

The above optimization problem can be solved via a global optimizer such as GA. Since the 
point with smallest value of LCB indicates the possible minimum of the unknown function, 
the optimum site optx̂  is then observed and added to sampled data sets to refine the 
surrogate models. This procedure is performed iteratively until the global optimum is 
reached.  
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4. Examples for applications to aircraft design 

4.1 Airfoil design 

Using an in-house Navier-Stokes flow solver, the objective of the problem is to minimize the 
drag of an RAE2822 airfoil at the flow condition of  0.73Ma = , o=2.7α , 6Re 6.5 10= × , subject to 
3 constraints: 

 

0

0

0

    :      Minimize     

      .          :     (1) 0.99

                   :     (2) 0.99

                   :     (3) m

d

l l

m

Objective C

st Area

C

C C

Area
C

×

×

≤

≥
≥

, (31) 

where Area0 ,Cl0  , Cm0  are the area, lift coefficient, and moment coefficient of the baseline 
airfoil, respectively. The first constraint is in consideration of the structural design of the 
wing to guarantee the volume of the wing; the second one is to enforce a constant lift of the 
wing in order to balance the weight of the aircraft at cruise condition; the third one is to 
control the pitching moment of the airfoil to avoid large drag penalty of the horizontal tail 
paid for balancing the aircraft. 

The initial number of samples for Kriging is set to 20, selected by the Latin Hypercube 
Sampling (LHS).  The airfoil is parameterized by 10 Hicks-Henne bump functions (Hicks & 
Henne, 1978); and the maximum amplitude of each bump is max / 0.544%A c = . Both of the 
SSM and EI infill strategies are adopted in the surrogate refinement. Table 2 presents the 
optimization results of the two optimization method. The optimized and initial airfoils and 
the corresponding pressure coefficient distributions are compared in Figure 7. Note that the 
aerodynamic coefficients of the initial airfoil RAE2822 are set to 100. Obviously, the Kriging-
based optimization method gives better result, and with higher efficiency, and is more likely 
to find the global optimum. 
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Fig. 7. Aerodynamic shape optimization of a transonic airfoil (RAE 2822) via Kriging and 
quadratic Response Surface Model (left: pressure distribution; right: airfoil shape); by using 
Kriging model with Expected Improvement infill criteria, the drag is reduced by 33.6% with 
only 56 calling of Navier-Stokes flow solver. 
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dC  lC  

m
C  Area NS flow solver calls 

baseline 100 100 100 100 - 

RSM 73.0 
(-27.0%) 

101.1 
(+1.1%) 

99.3 
(-0.7%) 

99.9 
(-0.1%) 

102 

Kriging 70.7 
(-29.3%) 

101.1 
(+1.1%) 

96.5 
(-3.5%) 

100.4 
(+0.4%) 

57 

Table 2. Drag reduction of an RAE 2822 airfoil via Kriging and RSM-based optimizations 

4.2 Wing design 

Here we are concerned with the preliminary design for a high-subsonic transport-aircraft 
wing of a wing/body combination, considering aerodynamic, structure and static 
aeroelastic effect. The calculation of the external flow is carried out by numerical solutions of 
the full potential equation in conservative form (Kovalev & Karas, 1991). The FEM-based 
commercial software ANSYS is used for analyzing the structural performance of the wing 
with double-beams sandwich structure. Weak coupling method is adopted for static 
aeroelastic analysis. 

The optimization objectives are to maximize the aircraft lift-to-drag ratio and minimize the 
weight of wing for a fixed maximum take-off weight of 54 tons and cruise Mach number of 
0.76 at 10,000 meters high. The wing is composed of inner and outer wing. The reference 
area of wing is 105 square meter. The mathematical model for optimization is of the form 

 

wing

3

2
wing

9
max

max

max
min

s.t. 54 /10 kg

100 110 /m

/10 pa
1 /m

b

L D
W

L

S

σ σ
δ

≥

≤ ≤

≤
≤

 (32) 

Eight supercritical airfoils are configured along the span. The optimization is subject to 4 
constraints. The first constraint is to enforce a constant lift of the wing in order to balance 
the weight of the aircraft at cruise condition; the second one is to guarantee a near constant 
wing loading; the third and fourth constraints are to make sure that the strength and rigidity 
requirements are satisfied. The definition for the limits of design variables is listed in Table 
3. The first four design variables define the aerodynamic configuration of the wing. The four 
remain are for structure design. The detail can be found in paper by Zhang et al. (2008). 

The uniform design table, U100(108), is used to creates one hundred candidate wings for 
building surrogate models. The other forty-five candidate wings are created by the uniform 
design table, U45(108), for evaluating the approximation model. For each wing, the static 
aeroelastic analysis is performed to obtain the responses of lift (L), lift-to-drag ratio (L/D), 
wing area (Swing), maximum stress (σmax), maximum deformation (δmax) and wing weight 
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(Wwing). Then the average relative errors and the root mean squared errors are calculated to 
evaluate the approximation models, as listed in Table 4. In this case Kriging and RSM have 
comparative high accuracy.  
 

Design variable Unit Lower limit Upper limit 
Span m 26 34 

Taper ratio  0.2 0.4 
Linear twist angle degree -3 -1 

Sweep angle on leading edge degree 25 35 
Thickness of front-spar web mm 2 6 
Thickness of back-spar web mm 2 6 

Thickness of lower skin mm 3 7 
Thickness of Upper skin mm 3 7 

Table 3. Definition of design variables for preliminary design of a high-subsonic transport-
aircraft wing 
 

Parameter Surrogate 
model 

e  eσ  Parameter Surrogate 
model 

e  eσ  

L RSM 0.0360 0.0213 σmax RSM 0.0563 0.0535 
Kriging 0.0362 0.0213 Kriging 0.0515 0.0522 

L/D RSM 0.0122 0.0099 δmax RSM 0.0227 0.0241 
Kriging 0.0123 0.0097 Kriging 0.0227 0.0241 

Swing RSM 0.0071 0.0051 Wwing RSM 0.0140 0.0104 
Kriging 0.0071 0.0051 Kriging 0.0142 0.0107 

Table 4. Evaluation of modeling accuracy 

Then the multi-objective optimization for the supercritical wing is performed based on RSM 
due to its higher computational efficiency. Weighted sum method is used to transform the 
multi-objective optimization into a single-objective optimization. Sequential quadratic 
programming method is employed to solve the optimization. One of the candidate wings 
with better performance, are selected as the initial point for optimization. The optimal 
design is observed by running the analysis codes and the results are listed in Table 5. Where 

0X  and 0Y  is the initial wing scheme and its response, respectively; *X  and *Y is the 
optimal wing scheme and its actual response, respectively; Ŷ is the response at *X  
calculated by the approximation models. For the optimal wing scheme, the largest relative 
error of approximation models is no more than 3 percent. It again proves the high accuracy 
of the approximation models.  

Figure 8 shows the contour of the equivalent stress of the optimal wing. It shows that the 
stress is larger in the location of intersection of inner wing and outer wing due to the 
inflexion. Figure 9 shows pressure distribution of the optimal wing. It shows that the wing 
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basically meets the design requirements of a supercritical wing. A little bit non-smoothness 
of the pressure distribution may be caused by non-uniform deformation of the skin. Figure 
10 shows the convergence history of aeroelastic deformation, which shows that fast 
convergence of the aeroelastic deformation of the optimal wing. 

The optimization , together with the aeroelastic analysis of all candidate wings, only takes 
about two days on a personal computer of Pentium(R) 4 CPU 2.8GHz. If more computers 
are used to concurrently calculate the performance of different candidate wings, the cost can 
be further greatly reduced.  

 
 B/m λ θ/(o) Λ/(o) TFS/mm TBS/mm TLS/mm TUS/mm 

X 0 34.00 0.244 -1.667 29.444 3.333 3.778 6.556 3.889 

X * 31.69 0.200 -1.563 28.233 2.232 2.000 4.396 4.057 

 L/103kg L/D Swing/m2 σmax/109pa δmax /m Wwing 
/103kg 

  

0Y  51.50 27.81 111.94 0.311 1.191 3.850   

Y * 53.14 27.40 107.25 0.275 0.991 3.063   

Ŷ  54.00 27.45 106.27 0.267 1.000 3.003   

Modeling error 1.61% 0.16% 0.91% 2.97% 0.87% 1.85%   

Table 5. Optimization results when considering the aeroelastic effect 

 

 
 

Fig. 8. Contour of equivalent stress of the optimal wing 
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Fig. 9. Pressure distribution of the optimal wing (Ma=0.76, Re=0.257E+08, α=0o) 
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Fig. 10. Convergence history of Y-direction deform and torsion deform on wing tip 
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5. Conclusion 

An overview of the existing surrogate models and the techniques about how to use them for 
optimization is presented in this chapter. Among the surrogate models, the regression 
model such as the quadratic response surface model (RSM) is well suited for a local 
optimization problem with relatively simpler design space; interpolation models such as 
Kriging or RBFs can be used for highly-nonlinear, multi-modal functions, and thus well 
suited for a global problem with relatively more complicated design space. From an 
application point of view, the simple framework of surrogate-based optimization is a good 
choice for an engineer design, due to the fact that surrogate model can act as an interface 
between the expensive analysis code and the optimizer and one doesn’t need to change the 
analysis code itself. The drawback of this framework is that the accuracy of optimum only 
depends on the approximation accuracy of surrogate model and we generally get an 
approximation to the true optimum. In contrast, the bi-level framework with different infill 
criteria provides an efficient way to quickly find true optimum without the need of building 
globally accurate surrogate models. Multiple infill criteria seem to be a better way to 
overcome the drawback of the single infill criterion. 

Examples for airfoil and wing designs show that surrogate-based optimization is very 
promising for aerodynamic problem with number of design variables being less than about 
10. For higher-dimensional problem, the computational cost increases very quickly, which 
can be prohibitive. Thus, use of surrogate model for high(er)-dimensional optimization 
problems would become an important issue of future work.   
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